Diet and Supplements
2.8K views | +0 today
Follow
Diet and Supplements
Dr. Alex Jimenez covers different diet and supplements plans for achieving overall wellness, including weight-loss, conditioning, and strengthening through healthy eating.  Book Appointment Today: https://bit.ly/Book-Online-Appointment
Your new post is loading...
Your new post is loading...
Scooped by Dr. Alex Jimenez
Scoop.it!

Digestive Enzymes: EP Wellness Functional Medicine Clinic | Call: 915-850-0900 or 915-412-6677

Digestive Enzymes: EP Wellness Functional Medicine Clinic | Call: 915-850-0900 or 915-412-6677 | Diet and Supplements | Scoop.it

The body makes digestive enzymes to help break down food carbohydrates, fats, and proteins. Healthy digestion and nutrient absorption depend on these enzymes, a protein that speeds up chemical reactions in the mouth, pancreas, and intestines. Certain health conditions like pancreatic insufficiency and lactose intolerance can cause low enzyme levels and insufficiency and may need replacement digestive enzymes to help prevent malabsorption. That's where digestive enzyme supplements come in.

Digestive Enzymes

Digestive enzymes are a vital part of digestion; without them, the body can't break foods down, and nutrients can't be fully absorbed. A lack of digestive enzymes can lead to gastrointestinal/GI symptoms and cause malnourishment, even with a nutritious diet. The result is unpleasant digestive symptoms that can include:

 

  • Poor absorption of nutrients
  • Bloating
  • Stomach pain
  • Nausea
  • Vomiting

 

Digestive enzyme supplements have been used for treating common forms of gut irritation, heartburn, and other ailments.

Enzyme Types

The main digestive enzymes made in the pancreas include:

Amylase

  • It is also made in the mouth.
  • Breaks down carbohydrates, or starches, into sugar molecules.
  • Low amylase can lead to diarrhea.

Lipase

  • This works with liver bile to break down fats.
  • Lipase insufficiency causes decreased levels of fat-soluble vitamins A, D, E, and K.

Protease

  • This enzyme breaks down proteins into amino acids.
  • It also helps keep bacteria, yeast, and protozoa out of the intestines.
  • A shortage of protease can lead to allergies or toxicity in the intestines.

Enzymes made in the small intestine include:

Lactase

  • Breaks down lactose, a sugar found in dairy products.

Sucrase

  • Breaks down sucrose, a sugar found in fruits and vegetables.

Insufficiency

When the body does not produce enough digestive enzymes or doesn't release them correctly. A few types include:

Lactose Intolerance

  • The body does not produce enough lactase, making digesting the natural sugar in milk and dairy products difficult.

Exocrine Pancreatic Insufficiency

  • EPI is when the pancreas does not produce enough of the enzymes necessary to digest carbohydrates, proteins, and fats.

Congenital Sucrase-Isomaltase Deficiency

  • The body does not have enough sucrase to digest certain sugars.

Symptoms

Common digestive enzyme insufficiency symptoms:

 

 

Talking to a doctor if symptoms persist is recommended, as these could be signs of gut irritation or indicate a more serious condition.

Supplements

Prescription Enzymes

Individuals diagnosed with enzyme insufficiency may need to take prescription digestive enzymes, depending on the severity. These supplements assist in food breakdown and nutrient absorption. The most common enzyme replacement therapy is pancreatic enzyme replacement therapy or PERT. PERT is a prescribed medication that includes amylase, lipase, and protease. Individuals with cystic fibrosis often have pancreatic enzyme insufficiency, as the body can’t release the enzymes properly. And individuals with pancreatitis require PERT because their pancreas develops mucus and scar tissue over time.

Over-The-Counter Enzymes

Over-the-counter digestive enzyme supplements can contain amylase, lipase, and protease and can help with acid reflux, gas, bloating, and diarrhea. Some contain lactase and alpha-galactosidase. Alpha-galactosidase can help break down a non-absorbable fiber called galactooligosaccharides /GOS, mostly found in beans, root vegetables, and certain dairy products.

Certain foods contain digestive enzymes, including:

 

  • Honey
  • Avocados
  • Bananas
  • Pineapples
  • Mangos
  • Papayas
  • Ginger
  • Sauerkraut
  • Kiwi
  • Kefir

 

Supplementing the diet with some of these foods can help with digestion.

Functional Nutrition

 

General Disclaimer *

The information herein is not intended to replace a one-on-one relationship with a qualified healthcare professional or licensed physician and is not medical advice. We encourage you to make healthcare decisions based on your research and partnership with a qualified healthcare professional. Our information scope is limited to chiropractic, musculoskeletal, physical medicines, wellness, sensitive health issues, functional medicine articles, topics, and discussions. We provide and present clinical collaboration with specialists from various disciplines. Each specialist is governed by their professional scope of practice and their jurisdiction of licensure. We use functional health & wellness protocols to treat and support care for the injuries or disorders of the musculoskeletal system. Our videos, posts, topics, subjects, and insights cover clinical matters, issues, and topics that relate to and directly or indirectly support our clinical scope of practice.* Our office has reasonably attempted to provide supportive citations and identified the relevant research study or studies supporting our posts. We provide copies of supporting research studies available to regulatory boards and the public upon request.

 

We understand that we cover matters that require an additional explanation of how it may assist in a particular care plan or treatment protocol; therefore, to further discuss the subject matter above, don't hesitate to contact Dr. Alex Jimenez or contact us at 915-850-0900.

 

Dr. Alex Jimenez DC, MSACPCCSTIFMCP*, CIFM*, ATN*

email: coach@elpasofunctionalmedicine.com

Licensed in: Texas & New Mexico*

References

Beliveau, Peter J H, et al. “An Investigation of Chiropractor-Directed Weight-Loss Interventions: Secondary Analysis of O-COAST.” Journal of manipulative and physiological therapeutics vol. 42,5 (2019): 353-365. doi:10.1016/j.jmpt.2018.11.015

 

Brennan, Gregory T, and Muhammad Wasif Saif. “Pancreatic Enzyme Replacement Therapy: A Concise Review.” JOP: Journal of the pancreas vol. 20,5 (2019): 121-125.

 

Corring, T. “The adaptation of digestive enzymes to the diet: its physiological significance.” Reproduction, nutrition, developpement vol. 20,4B (1980): 1217-35. doi:10.1051/rnd:19800713

 

Goodman, Barbara E. “Insights into digestion and absorption of major nutrients in humans.” Advances in physiology education vol. 34,2 (2010): 44-53. doi:10.1152/advan.00094.2009

 

Vogt, Günter. “Synthesis of digestive enzymes, food processing, and nutrient absorption in decapod crustaceans: a comparison to the mammalian model of digestion.” Zoology (Jena, Germany) vol. 147 (2021): 125945. doi:10.1016/j.zool.2021.125945

 

Whitcomb, David C, and Mark E Lowe. “Human pancreatic digestive enzymes.” Digestive diseases and sciences vol. 52,1 (2007): 1-17. doi:10.1007/s10620-006-9589-z

Dr. Alex Jimenez's insight:

Health conditions like lactose intolerance can cause low enzyme levels and may need replacement digestive enzymes. For answers to any questions you may have, please call Dr. Alexander Jimenez at 915-850-0900 or 915-412-6677

No comment yet.
Scooped by Dr. Alex Jimenez
Scoop.it!

Drinking Tea For Inflammation and Back Pain | Chiropractic Scientist | Call: 915-850-0900 or 915-412-6677

Drinking Tea For Inflammation and Back Pain | Chiropractic Scientist | Call: 915-850-0900 or 915-412-6677 | Diet and Supplements | Scoop.it

Individuals and doctors have praised the anti-inflammatory, pain-relieving properties of drinking tea. Inflammation is the body’s natural immune response when injury and infection present. This is good. However, it’s meant to be a temporary response that deactivates when there is no longer any danger. When the body is exposed to various irritants like industrial chemicals, inflammatory foods like sugar, refined carbohydrates, and autoimmune disorders can cause the immune system to go into overdrive. Chronic inflammation can develop, circulating powerful hormones and chemicals through the body, causing damage to the cells. One consequence of chronic inflammation is back pain. Besides standard backaches, some chronic conditions are directly tied to inflammation. These include forms of arthritis:

 

  • Ankylosing spondylitis
  • Rheumatoid arthritis
  • Transverse myelitis
  • Multiple sclerosis
  • These conditions involve inflammation of the central nervous system.
  • Drinking tea can help with back pain and pain in general.

Teas With Anti-Inflammatory Properties

Certain teas contain anti-inflammatory compounds. These compounds are called polyphenols and work to decrease the chemicals in the body responsible for pain and inflammation. There are varieties of teas that contain anti-inflammatory properties.

Certain Teas Reduce Inflammation

Drinking specific teas with more polyphenols can better decrease inflammation. For example, green tea is higher in polyphenols than black tea. Recent studies centered on individuals with rheumatoid arthritis over six months found significant improvement in symptoms in those who drank green tea. Green tea works best when part of an anti-inflammatory and nutritional lifestyle adjustment. This supports combating inflammation. Other teas that are believed to reduce inflammation include:

 

  • Turmeric
  • Holy basil
  • Ginger

Three Cups a Day

The amount of tea depends on the quality of the tea and how it is prepared. Doctors recommend around three cups a day for individuals with rheumatoid arthritis. However, these could contain caffeine. If this is an issue, there are decaffeinated versions with the same anti-inflammatory properties.

Drinking Tea Works Best When Combined with Other Treatments

If experiencing back pain or looking to combat a specific condition, it’s recommended to utilize various treatment approaches combined with drinking tea. This includes:

 

  • Chiropractic care
  • Physical therapy
  • Acupuncture
  • Mindfulness meditation
  • Yoga
  • Dietary supplements
  • Anti-inflammatory diet

Tea Is Not For All Types Of Pain

Certain back conditions benefit from drinking tea regularly; however, spine structural issues or fractures will not benefit from tea's mild anti-inflammatory properties. It is vital for individuals with back pain that a spine specialist or chiropractor perform a proper and thorough examination, especially for Individuals that take medication that could directly interact with anti-inflammatory teas.

Drinking Tea for Back Pain

For most individuals, drinking tea is safe to help treat back pain conditions and added health benefits. For example, studies have found that green tea has mild anti-cancer, anti-diabetic properties and can help in maintaining a healthy weight. If tea helps reduce pain, it's worth trying. Remember, pain is the body’s way to alert the individual that something is wrong.

Body Composition

 

Alcohol and Heart Health

According to the Mayo Clinic, consuming more than three alcoholic drinks in one sitting causes a temporary blood pressure elevation. Foods often served with alcohol are usually high in salt, which can also raise blood pressure. A few alcoholic beverages on a night out is fine, but heavy or binge drinking can lead to short-term spikes in blood pressure that could cause cardiac health problems. These are the short-term effects of alcohol on blood pressure. Heavy alcohol consumption can lead to long term health risks like:

 

  • Hypertension
  • Heart disease
  • Digestive issues
  • Liver disease
  • Stroke

 

It’s recommended that individuals incorporate regular exercise/physical activity and healthy diet changes and watch alcohol intake to improve heart health.

 

General Disclaimer *

The information herein is not intended to replace a one-on-one relationship with a qualified healthcare professional or licensed physician and is not medical advice. We encourage you to make your own health care decisions based on your research and partnership with a qualified health care professional. Our information scope is limited to chiropractic, musculoskeletal, physical medicines, wellness, sensitive health issues, functional medicine articles, topics, and discussions. We provide and present clinical collaboration with specialists from a wide array of disciplines. Each specialist is governed by their professional scope of practice and their jurisdiction of licensure. We use functional health & wellness protocols to treat and support care for the injuries or disorders of the musculoskeletal system. Our videos, posts, topics, subjects, and insights cover clinical matters, issues, and topics that relate to and support, directly or indirectly, our clinical scope of practice.* Our office has made a reasonable attempt to provide supportive citations and has identified the relevant research study or studies supporting our posts. We provide copies of supporting research studies available to regulatory boards and the public upon request.

We understand that we cover matters that require an additional explanation of how it may assist in a particular care plan or treatment protocol; therefore, to further discuss the subject matter above, please feel free to ask Dr. Alex Jimenez or contact us at 915-850-0900.

 

Dr. Alex Jimenez DC, MSACPCCSTIFMCP*, CIFM*, ATN*

email: coach@elpasofunctionalmedicine.com

Licensed in: Texas & New Mexico*

References

The Clinical Journal of Pain. (October 2019) “Nonspecific Low Back Pain:

 

Inflammatory Profiles of Patients With Acute and Chronic Pain” https://journals.lww.com/clinicalpain/fulltext/2019/10000/nonspecific_low_back_pain__inflammatory_profiles.2.aspx

 

Certain Teas Bring Down Inflammation More Than Others: Journal of Physical Therapy Science. (October 2016) “Green tea and exercise interventions as nondrug remedies in geriatric patients with rheumatoid arthritis” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5088134/

 

The Bottom Line: Proceeding of the Japan Academy, Series B Physical and Biological Sciences. (March 2012) “Health-promoting effects of green tea” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3365247/

Dr. Alex Jimenez's insight:

Doctors have praised the anti-inflammatory properties of drinking tea. It works best when combined with other treatment approaches. For answers to any questions you may have, please call Dr. Jimenez at 915-850-0900 or 915-412-6677

corona's curator insight, April 10, 5:57 AM

https://farmaciadimagrante.com/
https://farmaciadimagrante.com/Prodotto/acquista-mysimba-online/
https://farmaciadimagrante.com/Prodotto/acquista-mounjaro-online/
https://farmaciadimagrante.com/Prodotto/acquista-victoza-online/
https://farmaciadimagrante.com/Prodotto/acquistare-saxenda-6mg-ml-online/
https://farmaciadimagrante.com/Prodotto/acquista-ozempic-online/
https://farmaciadimagrante.com/Prodotto/acquista-wegovy-online/
https://farmaciadimagrante.com/Prodotto/acquista-nembutal-in-polvere-online/
https://farmaciadimagrante.com/Prodotto/acquista-online-nembutal-solution/
https://farmaciadimagrante.com/Prodotto/acquista-ketamina-hcl-500mg-10ml-in-linea/
https://farmaciadimagrante.com/Prodotto/acquistare-fentanyl-in-polvere-online/
https://farmaciadimagrante.com/Prodotto/acquistare-fentanyl-online/
https://farmaciadimagrante.com/Prodotto/acquista-cristallo-mdma-online/
https://farmaciadimagrante.com/Prodotto/acquista-ativan-online/
https://farmaciadimagrante.com/Prodotto/acquista-botox-online/
https://farmaciadimagrante.com/Prodotto/acquista-cerotti-al-fentanil/
https://farmaciadimagrante.com/Prodotto/acquista-codeina-linctus-online/
https://farmaciadimagrante.com/Prodotto/acquista-codeina-online/
https://farmaciadimagrante.com/Prodotto/acquista-demerol-online/
https://farmaciadimagrante.com/Prodotto/acquista-depalgo-online/
https://farmaciadimagrante.com/Prodotto/acquista-diazepam-online/
https://farmaciadimagrante.com/Prodotto/acquista-instanyl-online/
https://farmaciadimagrante.com/Prodotto/acquista-l-ritalin-online/
https://farmaciadimagrante.com/Prodotto/acquista-metadone/
https://farmaciadimagrante.com/Prodotto/acquista-opana-online/
https://farmaciadimagrante.com/Prodotto/acquista-stilnox-online/
https://farmaciadimagrante.com/Prodotto/acquista-suboxone-8mg/
https://farmaciadimagrante.com/Prodotto/acquista-subutex-online/
https://farmaciadimagrante.com/Prodotto/acquista-vicodin-online/
https://farmaciadimagrante.com/Prodotto/acquista-vyvanse-online/
https://farmaciadimagrante.com/Prodotto/acquista-xanax-2mg/
https://farmaciadimagrante.com/Prodotto/acquistare-rohypnol-2mg/
https://farmaciadimagrante.com/Prodotto/acquistare-sibutramina-online/
https://farmaciadimagrante.com/Prodotto/efedrina-hcl-in-polvere/
https://farmaciadimagrante.com/Prodotto/ephedrine-hcl-30mg/
https://farmaciadimagrante.com/Prodotto/sciroppo-di-metadone/
https://farmaciadimagrante.com/Prodotto/tramadolo-hcl-200mg/
https://farmaciadimagrante.com/Prodotto/acquista-adipex-online/
https://farmaciadimagrante.com/Prodotto/acquista-adderall-30mg/
https://farmaciadimagrante.com/Prodotto/acquista-oxycontin-online/
https://farmaciadimagrante.com/Prodotto/acquista-ossicodone-online/
https://farmaciadimagrante.com/Prodotto/acquista-phentermine-online/
https://farmaciadimagrante.com/Prodotto/acquista-ambien/
https://farmaciadimagrante.com/Prodotto/acquista-percocet-online/
https://farmaciadimagrante.com/Prodotto/acquistare-buprenorfina-8mg-2mg/
https://farmaciadimagrante.com/Prodotto/a-215-ossicodone-actavis/
https://farmaciadimagrante.com/Prodotto/acquista-eroina-bianca/

 

 

<a href="https://farmaciadimagrante.com/Prodotto/acquista-mysimba-online/">acquista-mysimba-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-mounjaro-online/">acquista-mounjaro-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-victoza-online/">acquista-victoza-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquistare-saxenda-6mg-ml-online/">acquistare-saxenda-6mg-ml-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-ozempic-online/">acquista-ozempic-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-wegovy-online/">acquista-wegovy-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-nembutal-in-polvere-online/">acquista-nembutal-in-polvere-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-online-nembutal-solution/">acquista-online-nembutal-solution</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-ketamina-hcl-500mg-10ml-in-linea/">acquista-ketamina-hcl-500mg-10ml-in-linea</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquistare-fentanyl-in-polvere-online/">acquistare-fentanyl-in-polvere-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquistare-fentanyl-online/">acquistare-fentanyl-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-ativan-online/">acquista-ativan-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-botox-online/">acquista-botox-online</a></a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-cerotti-al-fentanil/">acquista-cerotti-al-fentanil</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-codeina-linctus-online/">acquista-codeina-linctus-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-codeina-online/">acquista-codeina-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-demerol-online/">acquista-demerol-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-depalgo-online/">acquista-depalgo-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-diazepam-online/">acquista-diazepam-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-instanyl-online/">acquista-instanyl-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-l-ritalin-online/">acquista-l-ritalin-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-metadone/">acquista-metadone</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-opana-online/">acquista-opana-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-stilnox-online/">acquista-stilnox-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-suboxone-8mg/">acquista-suboxone-8mg</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-subutex-online/">acquista-subutex-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-vicodin-online/">acquista-vicodin-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-vyvanse-online/">acquista-vyvanse-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-xanax-2mg/">acquista-xanax-2mg</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquistare-rohypnol-2mg/">acquistare-rohypnol-2mg</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquistare-sibutramina-online/">acquistare-sibutramina-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/efedrina-hcl-in-polvere/">efedrina-hcl-in-polvere</a>;
<a href="https://farmaciadimagrante.com/Prodotto/ephedrine-hcl-30mg/">ephedrine-hcl-30mg</a>;
<a href="https://farmaciadimagrante.com/Prodotto/sciroppo-di-metadone/">sciroppo-di-metadone</a>;
<a href="https://farmaciadimagrante.com/Prodotto/tramadolo-hcl-200mg/">tramadolo-hcl-200mg</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-adipex-online/">acquista-adipex-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-adderall-30mg/">acquista-adderall-30mg</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-oxycontin-online/">acquista-oxycontin-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-ossicodone-online/">acquista-ossicodone-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-phentermine-online/">acquista-phentermine-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-ambien/">acquista-ambien</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-percocet-online/">acquistare-buprenorfina-8mg-2mg</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquistare-buprenorfina-8mg-2mg/">acquistare-buprenorfina-8mg-2mg</a>;
<a href="https://farmaciadimagrante.com/Prodotto/a-215-ossicodone-actavis/">a-215-ossicodone-actavis</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-eroina-bianca/">acquista-eroina-bianca</a>;

Scooped by Dr. Alex Jimenez
Scoop.it!

Ease Stress and Anxiety With Natural Medicine | Dr. Jimenez D.C. | Call: 915-850-0900 or 915-412-6677

Ease Stress and Anxiety With Natural Medicine | Dr. Jimenez D.C. | Call: 915-850-0900 or 915-412-6677 | Diet and Supplements | Scoop.it

Natural medicine for dealing with stress and taking initial steps can also help prevent and alleviate stress pain. With age, the body becomes more vulnerable to emotional and physical stress. The spine endures the effects of stress and can lead to back and/or neck pain. Chronic stress can also lead to chemical imbalances in the brain and overreaction/s. This produces a Hyperarousal or anxious state of mind. If frequent bouts of anxiety or stress are occurring the body is signaling that balance needs to be restored.

Steps to Control Stress

Take frequent physical and mental breaks

Throughout a day, there can be several and various stressful situations. Not letting the stress build-up is a skill that needs to be practiced. Every 50 minutes of work, take a 10-minute break to reduce any stress. This will increase productivity. In the middle or last break, practice deep breathing.

 

  • Inhale slowly until the air reaches the bottom of the stomach.
  • Exhale slowly like a balloon slowly releasing the air.
  • To achieve the full potential of deep breathing, every exhalation should last twice as long as each inhalation.

Caffeine reduction

Caffeine can be medicinal in small doses. It increases bile flow. This stimulates the gall bladder and reduces cholesterol. However, too much can interfere with the body's systems that are responsible for stress response. Try to limit to one to two caffeinated drinks a week.

Regular physical activity

Physical activity is what helps remove waste products, specifically lactic and uric acids, from the muscles and nervous system. An excess of these acids makes the body edgy. Moderate activity prevents and reduces anxiety.
Try to get in at least 10 to 15 minutes of activity in the morning and afternoon. A quick walk combined with deep breathing is perfect.

Plenty of sleep

Hard work and playing hard help the body to sleep to the fullest. An irregular sleep pattern or poor-quality sleep confuses the body. The body reacts abnormally. Examples like confusion, tension, an adrenaline rush kicks in when it is not needed. Chronic poor sleep makes the body more vulnerable to disease and chronic conditions.

Natural Medicine Supplements

Natural medicine supplements have been shown to reduce mild to moderate stress and anxiety.

 

  • Before trying any vitamins, minerals, or herbal therapies check with a doctor. This is to ensure safety with any medical conditions like pregnancy, that could prevent an individual from taking certain supplements.
  • Also, make sure if taking any medications that could cause natural medicine supplements ineffective or create a dangerous situation.
  • The reason for this is if an individual takes several supplements and develops side effects, it becomes a challenge to figure out which is responsible.
  • Quality herbs and supplements can be purchased from a licensed naturopath physician, nutritionist, health coach, or from a health store.

 

Herbal supplements listed below can be taken for three months and then a two-week break should be implemented. This minimizes the potential for negative effects.

Vitamin B

The B vitamins, especially B6 and B12 help regulate the body's response to stress and keeps the nervous system healthy.

 

  • Vitamin B complex formula that has at least 25 mg of B6 and also 1 mg of B12 can be taken twice a day.
  • These vitamins are optimized when used in combination with other nutrients like a multivitamin-mineral supplement also twice a day.
  • B12 in the form of hydroxocobalamin or methylcobalamin is better absorbed than the more common cyanocobalamin.

Kava

This is herbal supplement helps with anxiety and insomnia. It can help relieve acute and chronic anxiety without causing drowsiness or brain fog. Kava is effective for settling anxiety with no dependence potential.


Kava should be avoided if there is regular alcohol consumption or if taking Valium, Xanax, sleeping pills, like Seconal or Halcion, or anti-depressants, like Prozac or Zoloft.

Valerian

This is a natural sedative. It is used for relieving anxiety because it helps with sleep. The ingredients are similar to Valium. It is not addictive and does not cause grogginess the next day like sleeping pills. Recommended intake is one 150mg capsule twice a day. However, low doses can cause drowsiness. Therefore it is best used for sleep, one 300mg capsule one hour before sleeping is recommended. Do not use if taking sedatives, like phenobarbital or benzodiazepines.

 

 

The Body's Composition

 
 

Stress Can Throw Off Diet and Sleep

Achieving healthy body composition is more than just building muscle and losing fat. Proper diet and getting enough sleep are necessary to make meaningful progress. With chronic stress or poor sleep, this cannot be achieved. Depressive symptoms can be associated with obesity, and anxiety and depression can trigger emotional eating and weight gain. Proper stress management means making sure there are positive strategies, techniques that can be turned to in time of need. Without a plan, stress will cause health problems and will be a significant barrier when trying to achieve fitness and health goals.

Dr. Alex Jimenez’s Blog Post Disclaimer

The scope of our information is limited to chiropractic, musculoskeletal, physical medicines, wellness, and sensitive health issues and/or functional medicine articles, topics, and discussions. We use functional health & wellness protocols to treat and support care for injuries or disorders of the musculoskeletal system. Our posts, topics, subjects, and insights cover clinical matters, issues, and topics that relate and support directly or indirectly our clinical scope of practice.*

 

Our office has made a reasonable attempt to provide supportive citations and has identified the relevant research study or studies supporting our posts. We also make copies of supporting research studies available to the board and or the public upon request. We understand that we cover matters that require an additional explanation as to how it may assist in a particular care plan or treatment protocol; therefore, to further discuss the subject matter above, please feel free to ask Dr. Alex Jimenez or contact us at 915-850-0900. The provider(s) Licensed in Texas& New Mexico*

References

Boyle, Neil Bernard et al. “The Effects of Magnesium Supplementation on Subjective Anxiety and Stress-A Systematic Review.” Nutrients vol. 9,5 429. 26 Apr. 2017, doi:10.3390/nu9050429

Dr. Alex Jimenez's insight:

Natural medicine for dealing with stress and taking initial steps can also help prevent and alleviate stress pain. For answers to any questions you may have please call Dr. Jimenez at 915-850-0900 or 915-412-6677

acquista-depalgo-online's curator insight, March 25, 11:26 AM


https://globaalapotheek.com/product/koop-adderall-online/
https://globaalapotheek.com/product/efedrine-hcl-poeder-kopen/
https://globaalapotheek.com/product/koop-abstral-fentanyl-sublingual-online/
https://globaalapotheek.com/product/koop-actavis-hoestsiroop-online/
https://globaalapotheek.com/product/koop-adipex-online/
https://globaalapotheek.com/product/koop-ambien-online/
https://globaalapotheek.com/product/koop-ativan-online/
https://globaalapotheek.com/product/koop-botox-online/
https://globaalapotheek.com/product/koop-bromazepam-online/
https://globaalapotheek.com/product/koop-buprenorfine-online/
https://globaalapotheek.com/product/koop-desoxyn-online/
https://globaalapotheek.com/product/koop-dexedrine-online/
https://globaalapotheek.com/product/koop-diamorfine-online/
https://globaalapotheek.com/product/koop-dianabol-online/
https://globaalapotheek.com/product/koop-dysport-online/
https://globaalapotheek.com/product/koop-ecstasy-online/
https://globaalapotheek.com/product/koop-efedrine-hcl-online/
https://globaalapotheek.com/product/koop-endocet-online/
https://globaalapotheek.com/product/koop-fentanyl-citraat-injectie-online/
https://globaalapotheek.com/product/koop-fentanyl-pleisters-actavis/
https://globaalapotheek.com/product/koop-fentanyl-pleisters-mylan/
https://globaalapotheek.com/product/koop-fentanyl-sandoz-5x-100mcg/
https://globaalapotheek.com/product/koop-fentanyl-sandoz-5x-375mcg/
https://globaalapotheek.com/product/koop-focalin-xr-online/
https://globaalapotheek.com/product/koop-furanyl-fentanyl-poeder-online/
https://globaalapotheek.com/product/koop-humatrope-online/
https://globaalapotheek.com/product/koop-hydromorfoon-online/
https://globaalapotheek.com/product/koop-klonopin-online/
https://globaalapotheek.com/product/koop-ksalol-xanax-online/
https://globaalapotheek.com/product/koop-methadon-online/
https://globaalapotheek.com/product/koop-modafinil-online/
https://globaalapotheek.com/product/koop-morfine-sulfaat-200mg-online/
https://globaalapotheek.com/product/koop-morfine-sulfaat-30mg-online/
https://globaalapotheek.com/product/koop-morfine-sulfaat-60mg-online/
https://globaalapotheek.com/product/koop-neurobloc-online/
https://globaalapotheek.com/product/koop-norco-online/
https://globaalapotheek.com/product/koop-oramorph-online/
https://globaalapotheek.com/product/koop-oxycodon-80mg-online/
https://globaalapotheek.com/product/koop-oxycontin-online/
https://globaalapotheek.com/product/koop-oxymorfoon-online/
https://globaalapotheek.com/product/koop-percocet-online/
https://globaalapotheek.com/product/koop-quaalude-online/
https://globaalapotheek.com/product/koop-restoril-30mg-online/
https://globaalapotheek.com/product/koop-ritalin-online/
https://globaalapotheek.com/product/koop-roxicodone-online/
https://globaalapotheek.com/product/koop-soma-online/
https://globaalapotheek.com/product/koop-stilnox-online/
https://globaalapotheek.com/product/koop-suboxone-online/
https://globaalapotheek.com/product/koop-subutex-online/
https://globaalapotheek.com/product/koop-tramadol-online/
https://globaalapotheek.com/product/koop-triazolam-halcion-online/
https://globaalapotheek.com/product/koop-valium-online/
https://globaalapotheek.com/product/koop-vicodin-online/
https://globaalapotheek.com/product/koop-vyvanse-50mg-online/
https://globaalapotheek.com/product/koop-vyvanse-70mg-online/
https://globaalapotheek.com/product/koop-xanax-online/
https://globaalapotheek.com/product/koop-xls-max-online/
https://globaalapotheek.com/product/koop-zaleplon-online/
https://globaalapotheek.com/product/koop-zopiclon-online/
https://globaalapotheek.com/product/morfine-kopen/
https://globaalapotheek.com/product/morfine-injectie-kopen/
https://globaalapotheek.com/product/oxycodon-40mg-kopen-sandoz/
https://globaalapotheek.com/product/oxycodon-80mg-kopen-sandoz/
https://globaalapotheek.com/product/phentermine-online-kopen/
https://globaalapotheek.com/product/vyvanse-kopen/


<a href="https://globaalapotheek.com/product/efedrine-hcl-poeder-kopen/">efedrine-hcl-poeder-kopen</a>;
<a href="https://globaalapotheek.com/product/koop-abstral-fentanyl-sublingual-online/">koop-abstral-fentanyl-sublingual-online</a>;
<a href="https://globaalapotheek.com/product/koop-actavis-hoestsiroop-online/">koop-actavis-hoestsiroop-online</a>;
<a href="https://globaalapotheek.com/product/koop-adderall-online/">koop-adderall-online</a>;
<a href="https://globaalapotheek.com/product/koop-adipex-online/">koop-adipex-online</a>;
<a href="https://globaalapotheek.com/product/koop-ambien-online/">koop-ambien-online</a>;
<a href="https://globaalapotheek.com/product/koop-ativan-online/">koop-ativan-online</a>;
<a href="https://globaalapotheek.com/product/koop-botox-online/">koop-botox-online</a>;
<a href="https://globaalapotheek.com/product/koop-bromazepam-online/">koop-bromazepam-online</a>;
<a href="https://globaalapotheek.com/product/koop-buprenorfine-online/">koop-buprenorfine-online</a>;
<a href="https://globaalapotheek.com/product/koop-desoxyn-online/">koop-desoxyn-online</a>;
<a href="https://globaalapotheek.com/product/koop-dexedrine-online/">koop-dexedrine-online</a>;
<a href="https://globaalapotheek.com/product/koop-diamorfine-online/">koop-diamorfine-online</a>;
<a href="https://globaalapotheek.com/product/koop-dianabol-online/">koop-dianabol-online</a>;
<a href="https://globaalapotheek.com/product/koop-dysport-online/">koop-dysport-online</a>;
<a href="https://globaalapotheek.com/product/koop-ecstasy-online/">koop-ecstasy-online</a>;
<a href="https://globaalapotheek.com/product/koop-efedrine-hcl-online/">koop-efedrine-hcl-online</a>;
<a href="https://globaalapotheek.com/product/koop-endocet-online/">koop-endocet-online</a>;
<a href="https://globaalapotheek.com/product/koop-fentanyl-citraat-injectie-online/">koop-fentanyl-citraat-injectie-online</a>;
<a href="https://globaalapotheek.com/product/koop-fentanyl-pleisters-actavis/">koop-fentanyl-pleisters-actavis</a>;
<a href="https://globaalapotheek.com/product/koop-fentanyl-pleisters-mylan/">koop-fentanyl-pleisters-mylan</a>;
<a href="https://globaalapotheek.com/product/koop-fentanyl-sandoz-5x-100mcg/">koop-fentanyl-sandoz-5x-100mcg</a>;
<a href="https://globaalapotheek.com/product/koop-fentanyl-sandoz-5x-375mcg/">koop-fentanyl-sandoz-5x-375mcg</a>;
<a href="https://globaalapotheek.com/product/koop-focalin-xr-online/">koop-focalin-xr-online</a>;
<a href="https://globaalapotheek.com/product/koop-furanyl-fentanyl-poeder-online/">koop-furanyl-fentanyl-poeder-online</a>;
<a href="https://globaalapotheek.com/product/koop-humatrope-online/">koop-humatrope-online</a>;
<a href="https://globaalapotheek.com/product/koop-hydromorfoon-online/">koop-hydromorfoon-online</a>;
<a href="https://globaalapotheek.com/product/koop-klonopin-online/">koop-klonopin-online</a>;
<a href="https://globaalapotheek.com/product/koop-ksalol-xanax-online/">koop-ksalol-xanax-online</a>;
<a href="https://globaalapotheek.com/product/koop-methadon-online/">koop-methadon-online</a>;
<a href="https://globaalapotheek.com/product/koop-modafinil-online/">koop-modafinil-online</a>;
<a href="https://globaalapotheek.com/product/koop-morfine-sulfaat-200mg-online/">koop-morfine-sulfaat-200mg-online</a>;
<a href="https://globaalapotheek.com/product/koop-morfine-sulfaat-30mg-online/">koop-morfine-sulfaat-30mg-online</a>;
<a href="https://globaalapotheek.com/product/koop-morfine-sulfaat-60mg-online/">koop-morfine-sulfaat-60mg-online</a>;
<a href="https://globaalapotheek.com/product/koop-neurobloc-online/">koop-neurobloc-online</a>;
<a href="https://globaalapotheek.com/product/koop-norco-online/">koop-norco-online</a>;
<a href="https://globaalapotheek.com/product/koop-oramorph-online/">koop-oramorph-online</a>;
<a href="https://globaalapotheek.com/product/koop-oxycodon-80mg-online/">koop-oxycodon-80mg-online</a>;
<a href="https://globaalapotheek.com/product/koop-oxycontin-online/">koop-oxycontin-online</a>;
<a href="https://globaalapotheek.com/product/koop-oxymorfoon-online/">koop-oxymorfoon-online</a>;
<a href="https://globaalapotheek.com/product/koop-percocet-online/">koop-percocet-online</a>;
<a href="https://globaalapotheek.com/product/koop-quaalude-online/">koop-quaalude-online</a>;
<a href="https://globaalapotheek.com/product/koop-restoril-30mg-online/">koop-restoril-30mg-online</a>;
<a href="https://globaalapotheek.com/product/koop-ritalin-online/">koop-ritalin-online</a>;
<a href="https://globaalapotheek.com/product/koop-roxicodone-online/">koop-roxicodone-online</a>;
<a href="https://globaalapotheek.com/product/koop-soma-online/">koop-soma-online</a>;
<a href="https://globaalapotheek.com/product/koop-stilnox-online/">koop-stilnox-online</a>;
<a href="https://globaalapotheek.com/product/koop-suboxone-online/">koop-suboxone-online</a>;
<a href="https://globaalapotheek.com/product/koop-subutex-online/">koop-subutex-online</a>;
<a href="https://globaalapotheek.com/product/koop-tramadol-online/">koop-tramadol-online</a>;
<a href="https://globaalapotheek.com/product/koop-triazolam-halcion-online/">koop-triazolam-halcion-online</a>;
<a href="https://globaalapotheek.com/product/koop-valium-online/">koop-valium-online</a>;
<a href="https://globaalapotheek.com/product/koop-vicodin-online/">koop-vicodin-online</a>;
<a href="https://globaalapotheek.com/product/koop-vyvanse-50mg-online/">koop-vyvanse-50mg-online</a>;
<a href="https://globaalapotheek.com/product/koop-vyvanse-70mg-online/">koop-vyvanse-70mg-online</a>;
<a href="https://globaalapotheek.com/product/koop-xanax-online/">koop-xanax-online</a>;
<a href="https://globaalapotheek.com/product/koop-xls-max-online/">koop-xls-max-online</a>;
<a href="https://globaalapotheek.com/product/koop-zaleplon-online/">koop-zaleplon-online</a>;
<a href="https://globaalapotheek.com/product/koop-zopiclon-online/">koop-zopiclon-online</a>;
<a href="https://globaalapotheek.com/product/morfine-kopen/">morfine-kopen</a>;
<a href="https://globaalapotheek.com/product/morfine-injectie-kopen/">morfine-injectie-kopen</a>;
<a href="https://globaalapotheek.com/product/oxycodon-40mg-kopen-sandoz/">oxycodon-40mg-kopen-sandoz</a>;
<a href="https://globaalapotheek.com/product/oxycodon-80mg-kopen-sandoz/">oxycodon-80mg-kopen-sandoz</a>;
<a href="https://globaalapotheek.com/product/phentermine-online-kopen/">phentermine-online-kopen</a>;
<a href="https://globaalapotheek.com/product/vyvanse-kopen/">vyvanse-kopen</a>;


https://perderepesoefedrina.com/
https://perderepesoefedrina.com/Prodotto/acquista-ossicodone-online/
https://perderepesoefedrina.com/Prodotto/acquista-oxycontin-online/
https://perderepesoefedrina.com/Prodotto/acquista-percocet-online/
https://perderepesoefedrina.com/Prodotto/acquista-phentermine-online/
https://perderepesoefedrina.com/Prodotto/acquista-eroina-bianca/
https://perderepesoefedrina.com/Prodotto/a-215-ossicodone-actavis/
https://perderepesoefedrina.com/Prodotto/acquista-adderall-30mg/
https://perderepesoefedrina.com/Prodotto/acquista-adipex-online/
https://perderepesoefedrina.com/Prodotto/acquista-adma-online/
https://perderepesoefedrina.com/Prodotto/acquista-ambien/
https://perderepesoefedrina.com/Prodotto/acquista-ativan-online/
https://perderepesoefedrina.com/Prodotto/acquista-botox-online/
https://perderepesoefedrina.com/Prodotto/acquista-cerotti-al-fentanil/
https://perderepesoefedrina.com/Prodotto/acquista-codeina-linctus-online/
https://perderepesoefedrina.com/Prodotto/acquista-codeina-online/
https://perderepesoefedrina.com/Prodotto/acquista-demerol-online/
https://perderepesoefedrina.com/Prodotto/acquista-depalgo-online/
https://perderepesoefedrina.com/Prodotto/acquista-diazepam-online/
https://perderepesoefedrina.com/Prodotto/acquista-dilaudid-8mg/
https://perderepesoefedrina.com/Prodotto/acquista-endocet-online/
https://perderepesoefedrina.com/Prodotto/acquista-green-xanax/
https://perderepesoefedrina.com/Prodotto/acquista-hydrocodone-online/
https://perderepesoefedrina.com/Prodotto/acquista-instanyl-online/
https://perderepesoefedrina.com/Prodotto/acquista-l-ritalin-online/
https://perderepesoefedrina.com/Prodotto/acquista-metadone/
https://perderepesoefedrina.com/Prodotto/acquista-morfina-solfato/
https://perderepesoefedrina.com/Prodotto/acquista-opana-online/
https://perderepesoefedrina.com/Prodotto/acquista-roxicodone-30mg/
https://perderepesoefedrina.com/Prodotto/acquista-stilnox-online/
https://perderepesoefedrina.com/Prodotto/acquista-suboxone-8mg/
https://perderepesoefedrina.com/Prodotto/acquista-subutex-online/
https://perderepesoefedrina.com/Prodotto/acquista-vicodin-online/
https://perderepesoefedrina.com/Prodotto/acquista-vyvanse-online/
https://perderepesoefedrina.com/Prodotto/acquista-xanax-2mg/
https://perderepesoefedrina.com/Prodotto/acquistare-dapoxetina-online/
https://perderepesoefedrina.com/Prodotto/acquistare-rohypnol-2mg/
https://perderepesoefedrina.com/Prodotto/acquistare-sibutramina-online/
https://perderepesoefedrina.com/Prodotto/efedrina-hcl-in-polvere/
https://perderepesoefedrina.com/Prodotto/ephedrine-hcl-30mg/
https://perderepesoefedrina.com/Prodotto/sciroppo-di-metadone/
https://perderepesoefedrina.com/Prodotto/tramadolo-hcl-200mg/
https://perderepesoefedrina.com/Prodotto/acquista-cristallo-mdma-online/

 

 

 

Scooped by Dr. Alex Jimenez
Scoop.it!

Keto Diet Health Benefits | El Paso, TX Chiropractor | Call: 915-850-0900 

Keto Diet Health Benefits | El Paso, TX Chiropractor | Call: 915-850-0900  | Diet and Supplements | Scoop.it

If you are currently thinking about the ketogenic diet, then you might be asking yourself, is the keto diet right for you? While you may have already heard about the benefits of the ketogenic diet, you might still be wondering about whether if it is worth it to completely change your diet to take advantage of these benefits.

 

The keto diet has many benefits, from weight loss and improved physical health to mental clarity and enhanced physical performance. In the article, we will dive into the details of some of the ketogenic diet health benefits. These benefits can help with the particular health goal you may be attempting to attain.

Dr. Alex Jimenez's insight:

Weight loss is one of the most well-known advantages of the ketogenic diet. By reducing the consumption of carbohydrates, the cells will go into a state of ketosis and instead utilize ketones created from fats, providing a steadier supply of energy than that of glucose, or sugar. Furthermore, research studies have also demonstrated the ketogenic diet’s possible role in disease prevention, such as for people with epilepsy. For more information, please feel free to ask Dr. Alex Jimenez or contact us at (915) 850-0900.

No comment yet.
Scooped by Dr. Alex Jimenez
Scoop.it!

What are Exogenous Ketones? | El Paso, TX Chiropractor | Call: 915-850-0900 

What are Exogenous Ketones? | El Paso, TX Chiropractor | Call: 915-850-0900  | Diet and Supplements | Scoop.it

Ketones serve as a source of energy for the mitochondria found inside the cells of the human body. These are an alternative fuel to sugar. Ketones are basic substances with a simple molecular structure. Ketones are natural, or carbon-based, chemicals made up of a central carbon atom double-bonded into an oxygen atom and two carbon-containing substituents, denoted by ”R”.


In humans, there are 3 distinct ketones created by the mitochondria. These are referred to as ketone bodies. The 3 ketones are:

 

  • Acetone
  • Acetoacetate, also known as Acetoacetic Acid
  • Beta-Hydroxybutyric Acid, also known as Beta Hydroxybutyrate or BHB. Additional compound names include 3-hydroxybutyric acid or 3-hydroxybutyrate.


BHB isn’t particularly considered a ketone because it comprises a reactive OH-group rather than a double-bonded oxygen which would generally function as demonstrated in the diagram below. However, BHB continues to function much like a ketone because it transforms into energy, such as acetone and acetoacetate. The following is demonstrated in the diagram below.

Dr. Alex Jimenez's insight:

Ketogenesis, the metabolism of fatty acids through ketosis, can have a variety of health benefits. Many people achieve these benefits by following the ketogenic diet, however, these advantages can be achieved without the keto diet as well. Exogenous ketone bodies are simply ketones which are consumed through a nutritional supplement. Although the over-consumption of any supplement can have risks, exogenous ketone bodies can provide similar benefits to ketosis. For more information, please feel free to ask Dr. Alex Jimenez or contact us at (915) 850-0900.

No comment yet.
Scooped by Dr. Alex Jimenez
Scoop.it!

The Ketogenic Diet vs the Modified Ketogenic Diet | El Paso, TX Chiropractor | Call: 915-850-0900 

The Ketogenic Diet vs the Modified Ketogenic Diet | El Paso, TX Chiropractor | Call: 915-850-0900  | Diet and Supplements | Scoop.it

The ketogenic diet seems to be one of the most popular topics to reach the current diet world. The ketogenic diet, or the keto diet, is characterized as a high fat, low carb dietary regimen. With claims that you can eat all the fat you want while not feeling hungry and considering its belief to reduce your blood sugar when you have type 2 diabetes as well as help improve overall performance, the ketogenic diet appears to be the ideal nutritional standard of the modern world. However, is the ketogenic diet right for everyone? Below, we will discuss what the ketogenic diet is and describe the modified ketogenic diet, their benefits and risks.

Dr. Alex Jimenez's insight:

The ketogenic diet, or keto diet, is a low-carbohydrate, high-fat diet which has been demonstrated to have a wide variety of health benefits. As a matter of fact, many research studies have shown how the keto diet can help with weight loss, improving overall health and wellness. Modified versions of the ketogenic diet may also be utilized to accommodate to different needs. Ketogenic diets may even provide benefits against type-2 diabetes, epilepsy, Alzheimer’s disease and cancer. For more information, please feel free to ask Dr. Alex Jimenez or contact us at (915) 850-0900.

No comment yet.
Scooped by Dr. Alex Jimenez
Scoop.it!

Naturally Enhancing the Gut-Brain-Heart Connection | El Paso, TX Chiropractor | Call: 915-850-0900

Naturally Enhancing the Gut-Brain-Heart Connection | El Paso, TX Chiropractor | Call: 915-850-0900 | Diet and Supplements | Scoop.it

A majority of individuals today are aware about the gut-brain connection and how approximately 90 percent of their body’s serotonin is really generated in the gastrointestinal, or GI, tract as well as the way the gut-brain axis is associated with depression. Overall gut health involving a healthy population of gut microbiota can affect many facets of our well-being, therefore, it’s no mystery that the connection between the gut and chronic health issues, such as cardiovascular disease, diabetes and neurodegenerative diseases, are also significantly strong.

 

Berberine, an ancient mixture frequently utilized in a variety of medicinal herbs throughout several traditional treatments has been demonstrated to benefit as well as link the gut and the heart. Berberine is an isoquinoline derivative alkaloid found in numerous herbs. Although these berberine-containing herbs aren’t traditionally utilized in food preparations, the active ingredient has been identified and may be isolated from a variety of plant sources, such as Coptis chinensis, or Coptis or Goldthread, Hydrastis canadensis, or goldenseal, Berberis aquifolium, or Oregon grape, Berberis aristata, or Tree Turmeric, Berberis vulgaris, or Barberry, and Arcangelisia flava.

 

Berberine is most favorably known for its function in gut health, demonstrating activity which can help support gut microbial balance. In fact, scientists have shown a growing interest in many plant-derived compounds which affect bacterial direction and berberine is a pioneer in the group. Additionally, its a botanical proven to influence blood glucose, blood lipids and also the immune system. Researchers today have learned how berberine can provide these tremendous benefits.

Dr. Alex Jimenez's insight:

Research studies have found that the relationship between a healthy gut, brain and heart is fundamental towards overall well-being. Natural remedies and botanicals, such as berberine, can help promote as well as support this gut-brain-heart connection, while other alternative treatment options, such as chiropractic care, can restore balance and encourage the human body’s natural healing abilities by correcting spinal misalignments of the spine. For more information, please feel free to ask Dr. Jimenez or contact us at (915) 850-0900. 

No comment yet.
Scooped by Dr. Alex Jimenez
Scoop.it!

CBD - Cannabidiol's Life Changing Properties

CBD - Cannabidiol's Life Changing Properties | Diet and Supplements | Scoop.it

CBD research currently being conducted is showing its medical potential. This has opened doors for antipsychotic, anticancer and anti-inflammatory treatment options among a variety of others. Scientists from all over are publishing studies that are proving CBD is one of the most effective and favorable cannabinoids that promotes proper function of the body's systems.

Five Properties Of CBD

CBD Medical Benefits 

1. Inhibits Cancer Cell Growth

Studies have supported this claim. By way of Proapoptotic action or apoptosisCannabidiol, Tetrahydrocannabinol, Cannabigerol and Cannabichromene in this order are extremely effective in tumor growth reduction in rats and cancerous human prostate cells. Research is still ongoing, but understanding that these cannabinoids stimulate the body’s process of killing cells that no longer function properly or at their optimal level. In traditional chemotherapy both healthy and cancerous cells are destroyed and only works when the cancer cells are replicating more frequently than healthy cells. CBD treatment promotes the body’s natural immune response to cells that are not functioning properly, which eradicates tumors.

2. Pain Reducer

The most common reason people start using marijuana despite its psychoactive affects, is that it also functions, as a pain reliever! People with chronic pain that are tired of taking pain killing opiates, rely on cannabinoid products to deal with pain and eliminate its source, commonly inflammation. Inflammation is the body’s natural response to injury, which floods the injured area with blood and nutrients to aid in rehabilitation. But inflammation creates secondary problems, among them pain and discomfort. Through stimulation of nutrients in the area that is injured, CBD creates negative feedback to inflammatory reactions, as the nutrients that came with the inflammation are already there.

3. Treats Anxiety

Anxiety along with PTSD affects over 40 million adults in the U.S. Valium and Xanax is what is normally used to treat these conditions. However, CBD products are becoming the preferred treatment, as they have none of the side effects or dependency issues. The effects of CBD have been observed thoroughly by experts and studies have proved its effectiveness, as a dependable alternative for mental disorders. Two receptors in the human brain responsible for sending out Adrenaline and Serotonin are the α2-adrenergic receptor agonist and 5-HT1A receptor antagonist. These receptors both are related to anxiety, depression, insomnia, and other mental disorders when imbalanced.

4. Strengthens The Immune System

Phytocannabinoids are able to balance, reinforce and strengthen the immune system. Cannabinoid products taken daily, work in regulating the immune system. This increases the body’s detection of foreign and potentially dangerous organisms, which include cancer cells.

5. Prevents Muscle Spasms

CBD contains chemically antispasmodic properties. Athletes from all sports love CBD and what it can do. It is a preferred supplement and these oils have proven to prevent muscle spasms and soreness. This is done through lubricating the potassium and calcium pumps within the muscle tissue.

 

CBD is finding its place, slowly, but surely. It is one of natures own medicines and it is our job to discover and figure how to utilize these properties. Consult a doctor before beginning any treatment of diagnosed or undiagnosed diseases with CBD. For the more severe diseases like diabetes, schizophrenia, epilepsy, which, CBD can treat, but only when used properly.

Dr. Alex Jimenez's insight:

CBD research has opened doors for antipsychotic, anticancer and anti-inflammatory treatment options among a variety of others. For Answers to any questions you may have please call Dr. Jimenez at 915-850-0900

No comment yet.
Scooped by Dr. Alex Jimenez
Scoop.it!

Cannabidiol (CBD) For Migraines And Headaches?

Cannabidiol (CBD) For Migraines And Headaches? | Diet and Supplements | Scoop.it

The therapeutic effects of Cannabidiol or CBD, is often the cannabinoid’s pain soothing effect that gets talked about. Headaches are the most common source of pain for the general population. Therefore, it makes sense that CBD use for migraines and headaches is an obvious.

 

Migraines and headaches can be a medical mystery, but usually their causes are brought on by problems with brain stem centers. The only treatments thus far, has been painkillers i.e. paracetamol or ibuprofen. Triptan medications, which constricts the blood vessels in order to block pain pathways in the brain are used as well. But is there a better more natural way to treat headaches and migraines? 

Cannabis Has Been Treating Headaches For Quite Awhile

CBD oil for headaches is not a new therapy. Cannabis is mentioned as treatment for headaches in ancient texts that go back thousands of years. However, its use didn't become familiar in the west until the 19th century when it would be prescribed by doctors as a tincture.

 

Today conclusive clinical evidence is incomplete, as far as, medical cannabis and hemp oil use for headaches. But scientists do know when it comes to CBD oil use for headaches and migraines, that the endocannabinoid system is working in conjunction with the compounds. 

The Endocannabinoid System & Migraines

A theory brought about a possible contributing cause of migraines is dysfunction in the endocannabinoid system or (ECS). This is the body's network of receptors and cannabis-like chemicals that respond and regulate:

 

  • Pain
  • Immune system
  • Mood
  • Sleep
  • Appetite
  • Memory

 

Researchers have noted ECS mechanisms that could have a connection to migraine attacks.

 

Anandamide (AEA) is one of the prime endocannabinoids in the body. It is both a painkiller and has been found to power the serotonin 5-HT1A receptors.

 

The clearest record of endocannabinoid dysfunction that contributes to migraines is from a study in 2007 at the University of Perugia and published in the Journal of Neuropsychopharmacology. Researchers measured endocannabinoid levels in the cerebrospinal fluid of patients with chronic migraines and found significantly lower amounts of Anandamide. These findings, could "reflect an impairment of the endocannabinoid system in these patients, which may contribute to chronic head pain.” 

Clinical Endocannabinoid Deficiency? Migraines Could Be A Sign

The link between lower levels of endocannabinoids in migraine patients has contributed to the formulation of what has been termed Clinical Endocannabinoid Deficiency. This theory was developed by Neurologist and Cannabinoid Researcher Dr. Ethan Russo. 

 

The theory comes from how many brain disorders are inadequate or missing neurotransmitters like acetylcholine. Russo has suggested “a comparable deficiency in endocannabinoid levels might manifest similarly in certain disorders that display predictable clinical features as sequelae of this deficiency.”

 

In an interview he describes how, “If you don’t have enough endocannabinoids you have pain where there shouldn’t be pain. You would be sick, meaning nauseated. You would have a lowered seizure threshold. And just a whole litany of other problems.”

 

Russo relates these deficiencies can be addressed through introduction to plant cannabinoids, which act almost like those found in the body, by stimulating the endocannabinoid receptors. There is CB1 agonists such as Marinol and Nabilone have been tested for migraines, Russo suggests that the ECS needs a “gentle nudge” rather than a “forceful shove” given by these synthetic alternatives. He suggests small doses of whole plant cannabis, which contain “additional synergistic and buffering components, such as CBD and cannabis terpenoids.” 

Cannabidiol CBD Oil: Migraines

Russo in particular singles out CBD (Cannabidiol) in that it brings balance to the endocannabinoid system. In his interview with Martin Lee from Project CBD he says, “cannabidiol is an endocannabinoid modulator, in other words, when given chronically it actually increases the gain of the system…. So, if there’s too much activity in a system, homeostasis requires that it be brought back down. If there’s too little, it’s got to come up. And that’s what cannabidiol can do as a promoter of endocannabinoid tone.”

 

Scientists still are not exactly sure of how CBD interacts with the endocannabinoid system. Unlike psychoactive THC, CBD does not bind with any of the endocannabinoid receptors. Instead it activates a host of other non-endocannabinoid receptors, which work in the development and treatment of migraines, i.e. the 5-HT1A serotonin and TRPV-1 receptors.

 

Another possible explanation is CBD’s role as a fatty acid amide hydrolase (FAAH) inhibitor, which breaks down anandamide in the body. By inhibiting its production the theory is that it might lead to higher levels of pain relieving endocannabinoid. This is something that would benefit migraine sufferers.

Lack Of Clinical Evidence

Currently there are no gold standard, double blind, placebo clinical studies published to back up any accounts that suggest CBD or cannabis is an effective treatment for headaches and migraines.

 

One placebo controlled study has been conducted, documenting the safety and efficacy of synthetic THC medication Dronabinol for migraines. However, the results are still pending.

 

The largest study to take place was done from a retrospective basis. It was published in 2016 and found that out of 121 participants that suffer from migraines and were prescribed medical cannabis by a doctor; 103 participants found their migraine frequency reduced by half.

Can Cannabidiol Cause A Headache?

There are those who tried CBD and noted persistent headaches and even migraines. Does CBD cause headaches, even though the research suggests the contrary.

 

Those who reported getting headaches after taking CBD oil noted that the oil they bought was low quality, and the ingredients used included ethanol, various alcohols, preservatives and harsh chemicals.

 

When purchasing CBD oil for migraines or other conditions, get the best quality, not the cheapest!

How To Use CBD For Head Pain

There are different ways to apply CBD oil for headaches. If taking CBD for tension headaches, migraines or general headaches, there are many way to administer. Probably the simplest and most effective ways of using CBD is the sublingual method.

 

With this method one places a few drops of oil underneath the tongue. There it permeates through the membrane and makes its way to where it needs to go.

 

This isn’t the only method and many others can be just as effective. Make sure to do research when looking for CBD products online and the methods of administering these products.

 

Just like the nature of migraines, CBD for headaches and migraines is still not completely and scientifically understood. But with continued research of CBD and Cannabinoid based medicine, the future of sufferers of headaches and migraines will get better.

Injury Medical Clinic: Migraine Treatment

Dr. Alex Jimenez's insight:

Headaches are the most common source of pain in the country. Cannabidiol use for migraines and headaches is yet another therapy option. For Answers to any questions you may have please call Dr. Jimenez at 915-850-0900

No comment yet.
Scooped by Dr. Alex Jimenez
Scoop.it!

Lifestyle Change Vs. Diets In El Paso, TX. | Dr. Jimenez

Lifestyle Change Vs. Diets In El Paso, TX. | Dr. Jimenez | Diet and Supplements | Scoop.it

Diets: The statistics are sobering. The typical American diet far exceeds the daily recommended intake levels in calories from sugars and solid fats, sodium, refined grains, and saturated fat. It is also lacking in the recommended amounts of fruits, vegetables, dairy, whole grains, and oils. The result is obesity and experts project that by 2030, in the United States alone, half of all adults will be obese.

 

That’s when people start dieting – and that is what gets them into trouble.

Diet vs. Lifestyle Change

Bottom line, diets are temporary. There are some serious consequences that can come from dieting, especially fad or crash diets. The effects of these types of diets can also seriously impact your chiropractic care, hindering your progress.

 

Also, because diets are temporary, once you return to your regular eating habits the weight usually comes back.

 

A lifestyle change is a far better choice. It involves making smart, healthy eating choices – choices that you maintain for the rest of your life. This also impacts your chiropractic care by strengthening your body and keeping it healthy so that it is in an optimal state for healing and responds well to treatment.

Types Of Diets

There are all sorts of diets out there. Some are blatantly unhealthy but others are sneaky. They come with claims of being healthy, of being created or endorsed by doctors, or include tons of vitamin supplements but very limited food intake. It is important to be able to spot these destructive fad diets so you don’t get suckered into their hype.

 

Some of the most common types of fad diets include high protein, low or no carb, liquid, cabbage, grapefruit, broth or juice, and food combining. Some of these can cause serious health problems including vital organ damage. Others can cause vitamin deficiencies and dehydration. None of them can (or should) be maintained over a long period of time, much less the rest of your life.

The Dangers Of Diets

Unhealthy dieting can come with some pretty scary dangers. Because they typically omit key foods or food groups your body can become imbalanced. Some of the dangers of dieting include dehydration, fatigue, weakness, vitamin and mineral deficiency, headaches, nausea, diarrhea, constipation, mental fogginess, loss of muscle mass, organ damage, and even heart attack and stroke.

 

One popular diet restricts carbs, often cutting them out completely. This includes all whole grains (which have vital minerals and fiber) as well as many fruits and vegetables. The result is a diet that is mostly protein and fat.

 

While the dieter may lose some weight on this plan, it is at a great cost. The extremely high intake of protein which exceeds the levels that the body should have can cause liver and kidney failure. The omission of vital grains, fruits, and vegetables can lead to serious vitamin deficiencies while the increased fat intake can lead to heart attack and stroke.

 

If a diet eliminates any of the key foods (lean meats, whole grains, fruits, and vegetables), it advocates losing more than 2 or 3 pounds a week, or it restricts caloric intake to less than 1,200 calories a day it is potentially unhealthy and should only be done 1) under a doctor’s close supervision, and 2) on a very temporary basis.

Healthy Eating Is A Lifestyle

When you make the life changing commitment to adopt a healthy eating lifestyle you open yourself up to a world of better health, more energy, and better focus. Your body will heal faster and you will feel better.

 

A diet of fresh fruits and vegetables, lean meats, fresh fish, and whole grains, along with lots of water should become a way of life. It is far healthier than the temporary diets that are out there and more effective too.

 

If you or a loved one need additional dietary guidance, give us a call. Our Doctor of Chiropractic is here to help!

Dr. Alex Jimenez's insight:

El Paso, TX. Fad Diets are temporary. There are some serious consequences that can come from dieting, especially fad or crash diets. The effects of these types of diets can also seriously impact chiropractic care, which hinders progress. Lifestyle change is the way to go. For Answers to any questions you may have please call Dr. Jimenez at 915-850-0900

No comment yet.
Scooped by Dr. Alex Jimenez
Scoop.it!

Dietary Strategies: Prevention/Treatment Of Metabolic Syndrome

Dietary Strategies: Prevention/Treatment Of Metabolic Syndrome | Diet and Supplements | Scoop.it

Dietary Strategies:

 

Abstract: Metabolic syndrome (MetS) is established as the combination of central obesity and different metabolic disturbances, such as insulin resistance, hypertension and dyslipidemia. This cluster of factors affects approximately 10%–50% of adults worldwide and the prevalence has been increasing in epidemic proportions over the last years. Thus, dietary strategies to treat this heterogenic disease are under continuous study. In this sense, diets based on negative-energy-balance, the Mediterranean dietary pattern, n-3 fatty acids, total antioxidant capacity and meal frequency have been suggested as effective approaches to treat MetS. Furthermore, the type and percentage of carbohydrates, the glycemic index or glycemic load, and dietary fiber content are some of the most relevant aspects related to insulin resistance and impaired glucose tolerance, which are important co-morbidities of MetS. Finally, new studies focused on the molecular action of specific nutritional bioactive compounds with positive effects on the MetS are currently an objective of scientific research worldwide. The present review summarizes some of the most relevant dietary approaches and bioactive compounds employed in the treatment of the MetS to date.

 

Keywords: metabolic syndrome; dietary strategies; bioactive compounds

1. Metabolic Syndrome

It was during the period between 1910 and 1920 when it was suggested for the first time that a cluster of associated metabolic disturbances tended to coexist together [1]. Since then, different health organisms have suggested diverse definitions for metabolic syndrome (MetS) but there has not yet been a well-established consensus. The most common definitions are summarized in Table 1. What is clear for all of these is that the MetS is a clinical entity of substantial heterogeneity, commonly represented by the combination of obesity (especially abdominal obesity), hyperglycemia, dyslipidemia and/or hypertension [2–6].

 

Obesity consists of an abnormal or excessive fat accumulation, for which the main cause is a chronic imbalance between energy intake and energy expenditure [7,8]. The excess of energy consumed is primarily deposited in the adipose tissue as triglycerides (TG) [9].

 

Dyslipidemia encompasses elevated serum TG levels, increased low density lipoprotein- cholesterol (LDL-c) particles, and reduced levels of high density lipoprotein-cholesterol (HDL-c) [10]. It is associated with hepatic steatosis [11], dysfunction of pancreatic β-cells [12] and elevated risk of atherosclerosis [13], among others.

 

Another main modifiable MetS manifestation is hypertension, which is mainly defined as a resting systolic blood pressure (SBP) ≥ 140 mmHg or diastolic blood pressure (DBP) ≥ 90 mmHg or drug prescription to lower hypertension [14]. It usually involves narrowed arteries and is identified as a major cardiovascular and renal risk factor, related to heart and vascular disease, stroke and myocardial infarction [13,15–17].

 

Hyperglycemia, related insulin resistance and type 2 diabetes mellitus are characterized by an impaired uptake of glucose by the cells, that lead to elevated plasma glucose levels, glycosuria and ketoacidosis [18]. It is responsible for different tissue damage that shortens the life expectancy of diabetics, involving cardiovascular diseases (CVD), atherosclerosis, hypertension [19], β-cell dysfunction [12], kidney disease [20] or blindness [21]. Currently, diabetes is considered the leading cause of death in developed countries [22].

 

Moreover, oxidative stress and low grade inflammation are two important mechanisms implicated in the etiology, pathogenesis, and development of MetS [23]. Oxidative stress is defined as an imbalance between the pro-oxidants and antioxidants in the body [24]. It plays a key role in the development of atherosclerosis by different mechanisms such as the oxidation of LDL-c particles [25] or impairment of HDL-c functions [26]. Inflammation is an immune system response to injury hypothesized to be a major mechanism in the pathogenesis and progression of obesity related disorders and the link between adiposity, insulin resistance, MetS and CVD [27].

 

Although the prevalence of the MetS varies broadly around the word and depends on the source used for its definition, it is clear that over the last 40–50 years the number of people presenting with this syndrome has risen in epidemic proportions [28]. Moreover, the frequency of this syndrome is increased in developed countries, sedentary people, smokers, low socioeconomic status population, as well as in individuals with unhealthy dietary habits [29,30].

 

For all of this, there is currently a wide concern to find effective strategies to detect, treat and control the comorbidities associated with MetS. This is a complex challenge as MetS is a clinical entity of substantial heterogeneity and therefore, the different cornerstones implicated in its development should be addressed. In this review we compiled and examined different dietary patterns and bioactive compounds that have pointed out to be effective in MetS treatment.

2. Dietary Patterns

Several dietary strategies and their potential positive effects on the prevention and treatment of the different metabolic complications associated to the MetS, are described below and summarized in Table 2.

2.1. Energy-Restricted Diet Strategies

Energy restricted diets are probably the most commonly used and studied dietary strategies for combating excess weight and related comorbidities. They consist in personalized regimes that supply less calories than the total energy expended by a specific individual [31].

 

A hypocaloric diet results in a negative energy balance and subsequently, in body weight reduction [31]. Weight loss is achieved via fat mobilization from different body compartments as a consequence of the lipolysis process necessary to provide energy substrate [32,33]. In people who are overweight or suffering from obesity, as is the case of most people with MetS, weight loss is important as it is associated with improvement of related disorders such as abdominal obesity (visceral adipose tissue), type 2 diabetes, CVD or inflammation [32–36].

 

Moreover, as described above, low grade inflammation is associated with MetS and obesity. Therefore, of particular importance is the fact that in obese individuals following a hypocaloric diet, a depletion of plasma inflammatory markers such as interleukin (IL)-6 has been observed [34]. Thus, caloric restriction in obese people suffering MetS may improve the whole-body pro-inflammatory state.

 

At the same time, body weight reduction is associated with improvements in cellular insulin signal transduction, increments in peripheral insulin sensitivity and higher robustness in insulin secretory responses [32,36]. People with excess body weight who are at risk of developing type 2 diabetes, may benefit from a hypocaloric regime by improving plasma glucose levels and insulin resistance.

 

In addition, different intervention trials have reported a relationship between energy restricted diets and lower risk of developing CVD. In this sense, in studies with obese people following a hypocaloric diet, improvements in lipid profile variables such as reductions of LDL-c and plasma TG levels, as well as improvements in hypertension via depletion of SBP and DBP levels have been observed [35,37].

 

Among the different nutritional intervention trials, a reduction of 500–600 kcal a day of the energy requirements is a well-established hypocaloric dietary strategy, which has demonstrated to be effective in weight reduction [38,39]. However, the challenge lies in maintaining the weight loss over time, as many subjects can follow a prescribed diet for a few months, but most people have difficulty in maintaining the acquired habits over the long term [40,41].

2.2. Diets Rich in Omega-3 Fatty Acids

The very long-chain eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are essential omega-3 polyunsaturated fatty acids (n-3 PUFAs) for human physiology. Their main dietary sources are fish and algal oils and fatty fish, but they can also be synthesized by humans from α-linolenic acid [40].

 

There is a moderate body of evidence suggesting that n-3 PUFAs, mainly EPA and DHA, have a positive role in the prevention and treatment of the pathologies associated to MetS [42].

 

In this context, it has been described that EPA and DHA have the ability to reduce the risk of developing CVD and cardiometabolic abnormalities as well as CVD-related mortality [42]. These beneficial effects are thought to be mainly due to the ability of these essential fatty acids to reduce plasma TG levels [43].

 

Moreover, different studies have shown that people following an increased n-3 PUFA diet have reduced plasma levels of the pro-inflammatory cytokines IL-6 and tumor necrosis factor-alpha (TNFα), as well as plasma C-reactive protein (CRP) [44]. These effects are probably mediated by resolvins, maresins and protectins, which are EPA and DHA metabolic products with anti-inflammatory properties [44].

 

There are some studies that have observed an association between n-3 ingestion and improvements or prevention of type 2 diabetes development. However, other studies found opposite results [44]. Thus, it cannot be made any specific affirmation in this respect.

 

The European Food Safety Authority recommends and intake of 250 mg EPA + DHA a day, in the general healthy population as a primary prevention of CVD [45]. These amounts can be achieved with an ingestion of 1–2 fatty fish meals per week [45].

2.3. Diets Based on Low Glycemic Index/Load

Over the last ten years, the concern about the quality of the carbohydrates (CHO) consumed has risen [46]. In this context, the glycemic index (GI) is used as a CHO quality measure. It consists in a ranking on a scale from 0 to 100 that classifies carbohydrate-containing foods according to the postprandial glucose response [47]. The higher the index, the more promptly the postprandial serum glucose rises and the more rapid the insulin response. A quick insulin response leads to rapid hypoglycemia, which is suggested to be associated with an increment of the feeling of hunger and to a subsequent higher caloric intake [47]. The glycemic load (GL) is equal to the GI multiplied by the number of grams of CHO in a serving [48].

 

There is a theory which states that MetS is a consequence of an elevated intake of high GI foods over time, among others unhealthy dietary habits [49]. In this sense, following a diet rich in high GI CHO has been associated with hyperglycemia, insulin resistance, type 2 diabetes, hypertriglyceridemia, CVD, and obesity [47,50,51], abnormalities directly related to MetS.

 

On the contrary, a low GI diet has been associated with slower absorption of the CHO and subsequently smaller blood glucose fluctuations, which indicate better glycemic control [46]. In patients with type 2 diabetes, diets based on low GI are associated with reductions in glycated hemoglobin (HbA1c) and fructosamine blood levels, two biomarkers used as key monitoring factors in diabetes management [52,53].

 

For all of this, it is common to find the limitation of CHO at high GI among the advice for MetS treatment [28], in particular with respect to “ready-to-eat processed foods” including sweetened beverages, soft drinks, cookies, cakes, candy, juice drinks, and other foods which contain high amounts of added sugars [54].

2.4. Diets with High Total Antioxidant Capacity

Dietary total antioxidant capacity (TAC) is an indicator of diet quality defined as the sum of antioxidant activities of the pool of antioxidants present in a food [55]. These antioxidants have the capacity to act as scavengers of free radicals and other reactive species produced in the organisms [56]. Taking into account that oxidative stress is one of the remarkable unfortunate physiological states of MetS, dietary antioxidants are of main interest in the prevention and treatment of this multifactorial disorder [57]. Accordingly, it is well-accepted that diets with a high content of spices, herbs, fruits, vegetables, nuts and chocolate, are associated with a decreased risk of oxidative stress-related diseases development [58–60]. Moreover, several studies have analyzed the effects of dietary TAC in individuals suffering from MetS or related diseases [61,62]. In the Tehran Lipid and Glucose Study it was demonstrated that a high TAC has beneficial effects on metabolic disorders and especially prevents weight and abdominal fat gain [61]. In the same line, research conducted in our institutions also evidenced that beneficial effects on body weight, oxidative stress biomarkers and other MetS features were positively related with higher TAC consumption in patients suffering from MetS [63–65].

 

In this sense, the World Health Organization (WHO) recommendation for fruit and vegetables consumption (high TAC foods) for the general population is a minimum of 400 g a day [66]. Moreover, cooking with spices is recommended in order to increase the TAC dietary intake and, at the same time, maintain flavor while reducing salt [67].

2.5. Moderate-High Protein Diets

The macronutrient distribution set in a weight loss dietary plan has commonly been 50%–55% total caloric value from CHO, 15% from proteins and 30% from lipids [57,68]. However, as most people have difficulty in maintaining weight loss achievements over time [69,70], research on increment of protein intake (>20%) at the expense of CHO was carried out [71–77].

 

Two mechanisms have been proposed to explain the potential beneficial effects of high-moderate protein diets: the increment of diet-induced thermogenesis [73] and the increase of satiety [78]. The increment of the thermogenesis is explained by the synthesis of peptide bonds, production of urea and gluconeogenesis, which are processes with a higher energy requirement than the metabolism of lipids or CHO [75]. An increment of different appetite-control hormones such as insulin, cholecystokinin or glucagon-like peptide 1, may clarify the satiety effect [79].

 

Other beneficial effects attributed to moderate-high protein diets in the literature are the improvement of glucose homeostasis [80], the possibility of lower blood lipids [81], the reduction of blood pressure [82], the preservation of lean body mass [83] or the lower of cardiometabolic disease risk [84,85]. However, there are other studies that have not found benefits associated to a moderate-high protein diet [76]. This fact may be explained by the different type of proteins and their amino acid composition [80], as well as by the different type of populations included in each study [85]. Therefore, more research in the field is needed in order to make these results consistent.

 

In any case, when a hypocaloric diet is implemented, it is necessary to slightly increase the amount of proteins. Otherwise it would be difficult to reach the protein energy requirements, established as 0.83 g/kg/day for isocaloric diets and which should probably be at least 1 g/kg/day for energy-restricted diets [86].

2.6. High Meal Frequency Pattern

The pattern of increasing meal frequency in weight loss and weight control interventions has currently become popular among professionals [87,88]. The idea is to distribute the total daily energy intake into more frequently and smaller meals. However, there is no strong evidence about the efficacy of this habit yet [89]. While some investigations have found an inverse association between the increment of meals per day and body weight, body mass index (BMI), fat mass percentage or metabolic diseases such as coronary heart disease or type 2 diabetes [71,88,90–92], others have found no association [93–95].

 

Different mechanisms by which high meal frequency can have a positive effect on weight and metabolism management have been proposed. An increment of energy expenditure was hypothesized; however, the studies carried out in this line have concluded that total energy expenditure does not differ among different meal frequencies [96,97]. Another postulated hypothesis is that the greater the number of meals a day, the higher the fat oxidation, but again no consensus has been achieved [89,98]. An additional suggested mechanism is that increasing meal frequency leads to plasma glucose levels with lower oscillations and reduced insulin secretion which is thought to contribute to a better appetite control. However, these associations have been found in population with overweight or high glucose levels but in normal-weight or normoglycaemic individuals the results are still inconsistent [93,99–101].

2.7. The Mediterranean Diet

The concept of the Mediterranean Diet (MedDiet) was for the first time defined by the scientific Ancel Keys who observed that those countries around the Mediterranean Sea, which had a characteristic diet, had less risk of suffering coronary heart diseases [102,103].

 

The traditional MedDiet is characterized by a high intake of extra-virgin olive oil and plant foods (fruits, vegetables, cereals, whole grains, legumes, tree nuts, seeds and olives), low intakes of sweets and red meat and moderate consumption of dairy products, fish and red wine [104].

 

There is a lot of literature supporting the general health benefits of the MedDiet. In this sense, it has been reported that a high adherence to this dietary pattern protects against mortality and morbidity from several causes [105]. Thus, different studies suggested the MedDiet as a successful tool for the prevention and treatment of MetS and related comorbidities [106–108]. Moreover, recent meta-analysis concluded that the MedDiet is associated with less risk of developing type 2 diabetes and with a better glycemic control in people with this metabolic disorder [107,109,110]. Other studies have found a positive correlation between the adherence to a MedDiet pattern and reduced risk of developing CVD [111–114]. In fact, many studies have found a positive association between following a MedDiet and improvements in lipid profile by reduction of total cholesterol, LDL-c and TG, and an increase in HDL-c [111–115]. Finally, different studies also suggest that the MedDiet pattern may be a good strategy for obesity treatment as it has been associated with significant reductions in body weight and waist circumference [108,116,117].

 

The high amount of fiber which, among other beneficial effects, helps to weight control providing satiety; and the high antioxidants and anti-inflammatory nutrients such as n-3 fatty acids, oleic acid or phenolic compounds, are thought to be the main contributors to the positive effects attributed to the MedDiet [118].

 

For all these reasons, efforts to maintain the MedDiet pattern in Mediterranean countries and to implement this dietary habits in westernized countries with unhealthy nutritional patterns should be made.

3. Dietary: Single Nutrients and Bioactive Compounds

New studies focused on the molecular action of nutritional bioactive compounds with positive effects on MetS are currently an objective of scientific research worldwide with the aim of designing more personalized strategies in the framework of molecular nutrition. Among them, flavonoids and antioxidant vitamins are some of the most studied compounds with different potential benefits such as antioxidant, vasodilatory, anti-atherogenic, antithrombotic, and anti-inflammatory effects [119]. Table 3 summarizes different nutritional bioactive compounds with potential positive effects on MetS, including the possible molecular mechanism of action involved.

 

3.1. Ascorbate

Vitamin C, ascorbic acid or ascorbate is an essential nutrient as human beings cannot synthesize it. It is a water-soluble antioxidant mainly found in fruits, especially citrus (lemon, orange), and vegetables (pepper, kale) [120]. Several beneficial effects have been associated to this vitamin such as antioxidant and anti-inflammatory properties and prevention or treatment of CVD and type 2 diabetes [121–123].

 

This dietary component produces its antioxidant effect primarily by quenching damaging free radicals and other reactive oxygen and nitrogen species and therefore preventing molecules such as LDL-c from oxidation [122]. It can also regenerate other oxidized antioxidants like tocopherol [124].

 

Moreover, it has been described that ascorbic acid may reduce inflammation as it is associated with depletion of CRP levels [125]. This is an important outcome to take in consideration in the treatment of MetS sufferers, as they usually present low grade inflammation [27].

 

Supplementation with vitamin C have also been associated with prevention of CVD by improving the endothelial function [126] and probably by lowering blood pressure [121]. These effects are thought to be exerted by the ability of vitamin C to enhance the endothelial nitric oxide synthase enzyme (eNOS) activity and to reduce HDL-c glycation [127].

 

Additionally, several studies have attributed to ascorbate supplementation an antidiabetic effect by improving whole body insulin sensitivity and glucose control in people with type 2 diabetes [123]. These antidiabetic properties are thought to be mediated by optimization of the insulin secretory function of the pancreatic islet cells by increasing muscle sodium-dependent vitamin C transporters (SVCTs) [128].

 

Despite all of this, it should be taken into account that most people reach ascorbic acid requirements (established at 95–110 mg/day in the general population) from diet and do not need supplementation [122,129]. Besides, it should be considered that an excess of vitamin C ingestion leads to the opposite effect and oxidative particles are formed [130,131].

3.2. Hydroxytyrosol

Hydroxytyrosol (3,4-dihydroxyphenylethanol) is a phenolic compound mainly found in olives [132].

 

It is considered the strongest antioxidant of olive oil and one of the main antioxidants in nature [133]. It acts as a powerful scavenger of free radicals, as a radical chain breaker and as metal chelator [134]. It has the ability of inhibiting LDL-c oxidation by macrophages [132]. In this sense, it is the only phenol recognized by the European Food Safety Authority (EFSA) as a protector of blood lipids from oxidative damage [135].

 

Hydroxytyrosol has also been reported to have anti-inflammatory effects, probably by suppressing cyclooxygenase activity and inducing eNOS expression [136]. Thus, enhancement of olives/olive oil intakes or hydroxytyroxol supplementation in people suffering from MetS may be a good strategy in order to improve inflammatory status.

 

Another beneficial effect attributed to this phenolic compound is its cardiovascular protective effect. It presents anti-atherogenic properties by decreasing the expression of vascular cell adhesion protein 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) [132,137], which are probably the result of an inactivation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), activator protein 1 (AP-1), GATA transcription factor and nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase [138,139]. Hydroxytyrosol also provides antidyslipidemic effects by lowering plasma levels of LDL-c, total cholesterol and TG, and by rising HDL-c [138].

 

Despite the beneficial effects attributed to hydfroxytyrosol as an antioxidant, for its antiinflamatory properties and as cardiovascular protector, it should be taken into account that most studies focused on this compound have been performed with mixtures of olive phenols, thus a synergic effect cannot be excluded [140].

3.3. Quercetin

Quercetin is a predominant flavanol naturally present in vegetables, fruits, green tea or red wine. It is commonly found as glycoside forms, where rutin is the most common and important structure found in nature [141].

 

Many beneficial effects that can contribute to MetS improvement have been attributed to quercetin. Among them, its antioxidant capacity should be highlighted, as it has been reported to inhibit lipid peroxidation and increase antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) or glutathione peroxidase (GPX) [142].

 

Moreover, an anti-inflammatory effect mediated via attenuation of tumor necrosis factor α (TNF-α), NFκB and mitogen-activated protein kinases (MAPK), as well as depletion of IL-6, IL-1β, IL-8 or monocyte chemoattractant protein-1 (MCP-1) gene expression has also been attributed to this polyphenol [143].

 

As most people with MetS are overweight or obese, the role of quercetin in body weight reduction and obesity prevention has been of special interest. In this sense, it stands out the capacity of quercetin to inhibit adipogenesis through inducing the activation of AMP-activated protein kinase (AMPK) and decreasing the expression of CCAAT-enhancer-binding protein-α (C/EBPα), peroxisome proliferator-activated receptor gamma (PPARγ), and sterol regulatory element-binding protein 1 (SREBP-1) [141,144].

 

According to the antidiabetic effects, it is proposed that quercetin may act as an agonist of peroxisome proliferator-activated receptor gamma (PPARγ), and thus improve insulin-stimulated glucose uptake in mature adipocytes [145]. Moreover, quercetin may ameliorate hyperglycemia by inhibiting glucose transporter 2 (GLUT2) and insulin dependent phosphatidylinositol-3-kinase (PI3K) and blocking tyrosine kinase (TK) [142].

 

Finally, different studies observed that quercetin has the ability to reduce blood pressure [146–148]. However, the mechanisms of action are not clear, since some authors have suggested that quercetin increases eNOS, contributing to inhibition of platelet aggregation and improvement of the endothelial function [146,147], but there are other studies that have not come across these results [148].

3.4. Resveratrol

Resveratrol (3,5,4′-trihidroxiestilben) is a phenolic compound mainly found in red grapes and derived products (red wine, grape juice) [149]. It has shown antioxidant and anti-inflammatory activities, and cardioprotective, anti-obesity and antidiabetic capacities [150–156].

 

The antioxidant effects of resveratrol have been reported to be carried out by scavenging of hydroxyl, superoxide, and metal-induced radicals as well as by antioxidant effects in cells producing reactive oxygen species (ROS) [150].

 

Moreover, it has been reported that the anti-inflammatory effects of resveratrol are mediated by inhibiting NFκB signaling [151]. Furthermore, this polyphenol reduces the expression of proinflammatory cytokines such as interleukin 6 (IL-6), interleukin 8 (IL-8), TNF-α, monocyte chemoattractant protein-1 (MCP-1) and eNOS [152]. In addition, resveratrol inhibits the cyclooxygenase (COX) expression and activity, a pathway involved in the synthesis of proinflammatory lipid mediators [152].

 

Concerning the effects of resveratrol against development of type 2 diabetes, it has been reported that treatment of diabetes patients with this polyphenol provides significant improvements in the status of multiple clinically relevant biomarkers such as fasting glucose levels, insulin concentrations or glycated hemoglobin and Homeostasis Model Assessment Insulin Resistance (HOMA-IR) [153,154].

 

Additionally, cardioprotective effects have been attributed to resveratrol. In this sense, it is suggested that resveratrol improves the endothelial function by producing nitric oxide (NO) through increasing the activity and expression of eNOS. This effect is thought to be conducted through activation of nicotinamide adenine dinucleotide-dependent deacetylase sirtuin-1 (Sirt 1) and 5′ AMP-activated protein kinase (AMPK) [155]. Besides, resveratrol exerts endothelial protection by stimulation of NF-E2-related factor 2 (Nrf2) [156] and decreasing the expression of adhesion proteins such as ICAM-1 and VCAM-1 [152].

 

Finally, it has been described that resveratrol may have a role in preventing obesity as it has been related with energy metabolism improvement, increasing lipolysis and reducing lipogenesis [157]. However, more studies are needed in order to corroborate these findings.

3.5. Tocopherol

Tocopherols, also known as vitamin E, are a family of eight fat-soluble phenolic compounds whose main dietary sources are vegetable oils, nuts and seeds [130,158].

 

For a long time, it has been suggested that vitamin E could prevent different metabolic diseases as a potent antioxidant, acting as scavenger of lipid peroxyl radicals by hydrogen donating [159]. In this sense, it was described that tocopherols inhibit peroxidation of membrane phospholipids and prevent generation of free radicals in cell membranes [160].

 

Moreover, it has been shown that supplementation with α-tocopherol or γ-tocopherol, two of the different isoforms of vitamin E, could have an effect on inflammation status by reducing CRP levels [161]. Additionally, inhibition of COX and protein kinase C (PKC) and reduction of cytokines such as IL-8 or plasminogen activator inhibitor-1 (PAI-1) are other mechanisms that may contribute to these anti-inflammatory effects [162,163].

 

However, the beneficial effects attributed to this vitamin previously have lately became controversial as different clinical trials have not come across such benefits, but ineffective or even harmful effects have been observed [164]. It has been recently suggested that this may be explained by the fact that vitamin E may lose most of the antioxidant capacity when ingested by human beings through different mechanisms [162].

3.6. Anthocyanins

Anthocyanins are water-soluble polyphenolic compounds responsible for the red, blue and purple colors of berries, black currants, black grapes, peaches, cherries, plums, pomegranate, eggplant, black beans, red radishes, red onions, red cabbage, purple corn or purple sweet potatoes [165–167]. Actually, they are the most abundant polyphenols in fruits and vegetables [167]. Moreover, they can also be found in teas, honey, nuts, olive oil, cocoa, and cereals [168].

 

These compounds have high antioxidant capacity inhibiting or decreasing free radicals by donating or transferring electrons from hydrogen atoms [167].

 

Regarding clinical studies, it has been shown that these bioactive compounds may prevent type 2 diabetes development by improving insulin sensitivity [169]. The exact mechanisms by which anthocyanins exert their antidiabetic effect are not yet clear, but an enhancement of the glucose uptake by muscle and adipocyte cells in an insulin-independent manner has been suggested [169].

 

Moreover, it has been shown that anthocyanins may have the capacity to prevent CVD development by improving endothelial function via increasing brachial artery flow-mediated dilation and HDL-c, and decreasing serum VCAM-1 and LDL-c concentrations [170–173].

 

Finally, these polyphenolic compounds may exert anti-inflamatory effects via reducing proinflamatory molecules such as IL-8, IL-1β or CRP [172,174].

 

However, most studies have used anthocyanin-rich extracts instead of purified anthocyanins; thus, a synergic effect with other polyphenols cannot be discarded.

3.7. Catechins

Catechins are polyphenols that can be found in a variety of foods including fruits, vegetables, chocolate, wine, and tea [175]. The epigallocatechin 3-gallate present in tea leaves is the catechin class most studied [176].

 

Anti-obesity effects have been attributed to these polyphenols in different studies [176]. The mechanisms of action suggested to explain these beneficial effects on body weight are: increasing energy expenditure and fat oxidation, and reducing fat absorption [177]. It is thought that energy expenditure is enhanced by catechol-O-methyltransferase and phosphodiesterase inhibition, which stimulates the sympathetic nervous system causing an activation of the brown adipose tissue [178]. Fat oxidation is mediated by upregulation of acyl-CoA dehydrogenase and peroxisomal b-oxidation enzymes [178,179].

 

Moreover, catechin intake has also been associated with lower risk of CVD development by improving lipid biomarkers. Thus, it has been reported that consumption of this kind of polyphenols may increase HDL-c and decrease LDL-c and total cholesterol [180].

 

Finally, and antidiabetic effect has also been related to catechin comsumption, lowering fasting glucose levels [175] and improving insulin sensitivity [178].

4. Conclusions

As the prevalence of MetS reaches epidemic rates, the finding of an effective and easy-to-follow dietary strategy to combat this heterogenic disease is still a pending subject. This work recompiled different dietary nutrients and nutritional patterns with potential benefits in the prevention and treatment of MetS and related comorbidities (Figure 1) with the aim of facilitating future clinical studies in this area. The challenge now is to introduce precision bioactive compounds in personalized nutritional patterns in order to gain the most benefits for prevention and treatment of this disease through nutrition.

 

Conflicts of Interest: The authors declare no conflict of interest.

 

1. Sarafidis, P.A.; Nilsson, P.M. The metabolic syndrome: A glance at its history. J. Hypertens. 2006, 24, 621–626.
[CrossRef] [PubMed]
2. Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications.
Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation.
Diabet. Med. 1998, 15, 539–553. [CrossRef]
3. Balkau, B.; Charles, M.A. Comment on the provisional report from the WHO consultation. European Group
for the Study of Insulin Resistance (EGIR). Diabet. Med. 1999, 16, 442–423. [PubMed]
4. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive
Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on
Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA
2001, 285, 2486–2497.
5. Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.;
Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome:
An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation
2005, 112, 2735–2752. [CrossRef] [PubMed]
6. Alberti, K.G.; Zimmet, P.; Shaw, J. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366,
1059–1062. [CrossRef]
7. Selassie, M.; Sinha, A.C. The epidemiology and aetiology of obesity: A global challenge. Best Pract. Res.
Clin. Anaesthesiol. 2011, 25, 1–9. [CrossRef] [PubMed]
8. WHO, W.H.O. Available online: http://www.who.int/mediacentre/factsheets/fs311/es/ (accessed on
4 June 2016).
9. Shimano, H. Novel qualitative aspects of tissue fatty acids related to metabolic regulation: Lessons from
Elovl6 knockout. Prog. Lipid Res. 2012, 51, 267–271. [CrossRef] [PubMed]
10. Bosomworth, N.J. Approach to identifying and managing atherogenic dyslipidemia: A metabolic
consequence of obesity and diabetes. Can. Fam. Phys. 2013, 59, 1169–1180.
11. Vidal-Puig, A. The Metabolic Syndrome and its Complex Pathophysiology. In A Systems Biology Approach to
Study Metabolic Syndrome; Oresic, M., Ed.; Springer: New York, NY, USA, 2014; pp. 3–16.
12. Poitout, V.; Robertson, R.P. Glucolipotoxicity: Fuel excess and beta-cell dysfunction. Endocr. Rev. 2008, 29,
351–366. [CrossRef] [PubMed]
13. Rizza, W.; Veronese, N.; Fontana, L. What are the roles of calorie restriction and diet quality in promoting
healthy longevity? Ageing Res. Rev. 2014, 13, 38–45. [CrossRef] [PubMed]
14. Lloyd-Jones, D.M.; Levy, D. Epidemiology of Hypertension. In Hypertension: A Companion to Braunwald’s
Heart Disease; Black, H.R., Elliott, W.J., Eds.; Elsevier: Philadephia, PA, USA, 2013; pp. 1–11.
15. Zanchetti, A. Challenges in hypertension: Prevalence, definition, mechanisms and management. J. Hypertens.
2014, 32, 451–453. [CrossRef] [PubMed]
16. Thomas, G.; Shishehbor, M.; Brill, D.; Nally, J.V., Jr. New hypertension guidelines: One size fits most?
Clevel. Clin. J. Med. 2014, 81, 178–188. [CrossRef] [PubMed]
17. James, P.A.; Oparil, S.; Carter, B.L.; Cushman, W.C.; Dennison-Himmelfarb, C.; Handler, J.; Lackland, D.T.;
LeFevre, M.L.; MacKenzie, T.D.; Ogedegbe, O.; et al. 2014 evidence-based guideline for the management
of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National
Committee (JNC 8). JAMA 2014, 311, 507–520. [CrossRef] [PubMed]
18. Klandorf, H.; Chirra, A.R.; DeGruccio, A.; Girman, D.J. Dimethyl sulfoxide modulation of diabetes onset in
NOD mice. Diabetes 1989, 38, 194–197. [CrossRef] [PubMed]
19. Ballard, K.D.; Mah, E.; Guo, Y.; Pei, R.; Volek, J.S.; Bruno, R.S. Low-fat milk ingestion prevents postprandial
hyperglycemia-mediated impairments in vascular endothelial function in obese individuals with metabolic
syndrome. J. Nutr. 2013, 143, 1602–1610. [CrossRef] [PubMed]
20. Pugliese, G.; Solini, A.; Bonora, E.; Orsi, E.; Zerbini, G.; Fondelli, C.; Gruden, G.; Cavalot, F.; Lamacchia, O.;
Trevisan, R.; et al. Distribution of cardiovascular disease and retinopathy in patients with type 2 diabetes
according to different classification systems for chronic kidney disease: A cross-sectional analysis of the
renal insufficiency and cardiovascular events (RIACE) Italian multicenter study. Cardiovasc. Diabetol. 2014,
13, 59. [PubMed]
21. Asif, M. The prevention and control the type-2 diabetes by changing lifestyle and dietary pattern. J. Educ.
Health Promot. 2014, 3, 1. [CrossRef] [PubMed]
22. Russell, W.R.; Baka, A.; Bjorck, I.; Delzenne, N.; Gao, D.; Griffiths, H.R.; Hadjilucas, E.; Juvonen, K.;
Lahtinen, S.; Lansink, M.; et al. Impact of Diet Composition on Blood Glucose Regulation. Crit. Rev. Food
Sci. Nutr. 2016, 56, 541–590. [CrossRef] [PubMed]
23. Soares, R.; Costa, C. Oxidative Stress, Inflammation and Angiogenesis in the Metabolic Syndrome; Springer:
Heidelberg, Germany, 2009.
24. Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative Stress,
Prooxidants, and Antioxidants: The Interplay. BioMed Res. Int. 2014, 2014, 761264. [CrossRef] [PubMed]
25. Parthasarathy, S.; Litvinov, D.; Selvarajan, K.; Garelnabi, M. Lipid peroxidation and decomposition—Conflicting
roles in plaque vulnerability and stability. Biochim. Biophys. Acta 2008, 1781, 221–231. [CrossRef] [PubMed]
26. McGrowder, D.; Riley, C.; Morrison, E.Y.; Gordon, L. The role of high-density lipoproteins in reducing the
risk of vascular diseases, neurogenerative disorders, and cancer. Cholesterol 2011, 2011, 496925. [CrossRef]
[PubMed]
27. Ferri, N.; Ruscica, M. Proprotein convertase subtilisin/kexin type 9 (PCSK9) and metabolic syndrome:
Insights on insulin resistance, inflammation, and atherogenic dyslipidemia. Endocrine 2016. [CrossRef]
28. Oresic, M.; Vidal-Puig, A. A Systems Biology Approach to Study Metabolic Syndrome; Springer: Heidelberg,
Germany, 2014.
29. Lee, E.G.; Choi, J.H.; Kim, K.E.; Kim, J.H. Effects of a Walking Program on Self-management and Risk Factors
of Metabolic Syndrome in Older Korean Adults. J. Phys. Ther. Sci. 2014, 26, 105–109. [CrossRef] [PubMed]
30. Bernabe, G.J.; Zafrilla, R.P.; Mulero, C.J.; Gomez, J.P.; Leal, H.M.; Abellan, A.J. Biochemical and nutritional
markers and antioxidant activity in metabolic syndrome. Endocrinol. Nutr. 2013, 61, 302–308.
31. Bales, C.W.; Kraus, W.E. Caloric restriction: Implications for human cardiometabolic health. J. Cardiopulm.
Rehabil. Prev. 2013, 33, 201–208. [CrossRef] [PubMed]
32. Grams, J.; Garvey, W.T. Weight Loss and the Prevention and Treatment of Type 2 Diabetes Using Lifestyle
Therapy, Pharmacotherapy, and Bariatric Surgery: Mechanisms of Action. Curr. Obes. Rep. 2015, 4, 287–302.
[CrossRef] [PubMed]
33. Lazo, M.; Solga, S.F.; Horska, A.; Bonekamp, S.; Diehl, A.M.; Brancati, F.L.; Wagenknecht, L.E.; Pi-Sunyer, F.X.;
Kahn, S.E.; Clark, J.M. Effect of a 12-month intensive lifestyle intervention on hepatic steatosis in adults with
type 2 diabetes. Diabetes Care 2010, 33, 2156–2163. [CrossRef] [PubMed]
34. Rossmeislova, L.; Malisova, L.; Kracmerova, J.; Stich, V. Adaptation of human adipose tissue to hypocaloric
diet. Int. J. Obes. 2013, 37, 640–650. [CrossRef] [PubMed]
35. Wing, R.R.; Lang, W.; Wadden, T.A.; Safford, M.; Knowler, W.C.; Bertoni, A.G.; Hill, J.O.; Brancati, F.L.;
Peters, A.; Wagenknecht, L. Benefits of modest weight loss in improving cardiovascular risk factors in
overweight and obese individuals with type 2 diabetes. Diabetes Care 2011, 34, 1481–1486. [CrossRef]
[PubMed]
36. Golay, A.; Brock, E.; Gabriel, R.; Konrad, T.; Lalic, N.; Laville, M.; Mingrone, G.; Petrie, J.; Phan, T.M.;
Pietilainen, K.H.; et al. Taking small steps towards targets—Perspectives for clinical practice in diabetes,
cardiometabolic disorders and beyond. Int. J. Clin. Pract. 2013, 67, 322–332. [CrossRef] [PubMed]
37. Fock, K.M.; Khoo, J. Diet and exercise in management of obesity and overweight. J. Gastroenterol. Hepatol.
2013, 28, 59–63. [CrossRef] [PubMed]
38. Abete, I.; Parra, D.; Martinez, J.A. Energy-restricted diets based on a distinct food selection affecting the
glycemic index induce different weight loss and oxidative response. Clin. Nutr. 2008, 27, 545–551. [CrossRef]
[PubMed]
39. Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.;
Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the
International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung,
and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis
Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [PubMed]
40. Fleming, J.A.; Kris-Etherton, P.M. The evidence for alpha-linolenic acid and cardiovascular disease benefits:
Comparisons with eicosapentaenoic acid and docosahexaenoic acid. Adv. Nutr. 2014, 5, 863S–876S. [CrossRef]
[PubMed]
41. Gray, B.; Steyn, F.; Davies, P.S.; Vitetta, L. Omega-3 fatty acids: A review of the effects on adiponectin and
leptin and potential implications for obesity management. Eur. J. Clin. Nutr. 2013, 67, 1234–1242. [CrossRef]
[PubMed]
42. Wen, Y.T.; Dai, J.H.; Gao, Q. Effects of Omega-3 fatty acid on major cardiovascular events and mortality
in patients with coronary heart disease: A meta-analysis of randomized controlled trials. Nutr. Metab.
Cardiovasc. Dis. 2014, 24, 470–475. [CrossRef] [PubMed]
43. Lopez-Huertas, E. The effect of EPA and DHA on metabolic syndrome patients: A systematic review of
randomised controlled trials. Br. J. Nutr. 2012, 107, 185–194. [CrossRef] [PubMed]
44. Maiorino, M.I.; Chiodini, P.; Bellastella, G.; Giugliano, D.; Esposito, K. Sexual dysfunction in women with
cancer: A systematic review with meta-analysis of studies using the Female Sexual Function Index. Endocrine
2016, 54, 329–341. [CrossRef] [PubMed]
45. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on Dietary
Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated
fatty acids, trans fatty acids, and cholesterol1. EFSA J. 2010, 8, 1461–1566.
46. Bellastella, G.; Bizzarro, A.; Aitella, E.; Barrasso, M.; Cozzolino, D.; di Martino, S.; Esposito, K.; de Bellis, A.
Pregnancy may favour the development of severe autoimmune central diabetes insipidus in women with
vasopressin cell antibodies: Description of two cases. Eur. J. Endocrinol. 2015, 172, K11–K17. [CrossRef]
[PubMed]
47. Sun, F.H.; Li, C.; Zhang, Y.J.; Wong, S.H.; Wang, L. Effect of Glycemic Index of Breakfast on Energy Intake at
Subsequent Meal among Healthy People: A Meta-Analysis. Nutrients 2016, 8, 37. [CrossRef] [PubMed]
48. Barclay, A.W.; Brand-Miller, J.C.; Wolever, T.M. Glycemic index, glycemic load, and glycemic response are
not the same. Diabetes Care 2005, 28, 1839–1840. [CrossRef] [PubMed]
49. Nakagawa, T.; Hu, H.; Zharikov, S.; Tuttle, K.R.; Short, R.A.; Glushakova, O.; Ouyang, X.; Feig, D.I.;
Block, E.R.; Herrera-Acosta, J.; et al. A causal role for uric acid in fructose-induced metabolic syndrome.
Am. J. Physiol. Ren. Physiol. 2006, 290, F625–F631. [CrossRef] [PubMed]
50. Symons Downs, D.; Hausenblas, H.A. Women’s exercise beliefs and behaviors during their pregnancy and
postpartum. J. Midwifery Women Health 2004, 49, 138–144.
51. Brand-Miller, J.; McMillan-Price, J.; Steinbeck, K.; Caterson, I. Dietary glycemic index: Health implications.
J. Am. Coll. Nutr. 2009, 28, 446S–449S. [CrossRef] [PubMed]
52. Thomas, D.; Elliott, E.J. Low glycaemic index, or low glycaemic load, diets for diabetes mellitus.
Cochrane Database Syst. Rev. 2009. [CrossRef]
53. Barrea, L.; Balato, N.; di Somma, C.; Macchia, P.E.; Napolitano, M.; Savanelli, M.C.; Esposito, K.; Colao, A.;
Savastano, S. Nutrition and psoriasis: Is there any association between the severity of the disease and
adherence to the Mediterranean diet? J. Transl. Med. 2015, 13, 18. [CrossRef] [PubMed]
54. Mathias, K.C.; Ng, S.W.; Popkin, B. Monitoring changes in the nutritional content of ready-to-eat grain-based
dessert products manufactured and purchased between 2005 and 2012. J. Acad. Nutr. Diet. 2015, 115, 360–368.
[CrossRef] [PubMed]
55. Serafini, M.; del Rio, D. Understanding the association between dietary antioxidants, redox status and
disease: Is the Total Antioxidant Capacity the right tool? Redox Rep. 2004, 9, 145–152. [CrossRef] [PubMed]
56. Bellastella, G.; Maiorino, M.I.; Olita, L.; della Volpe, E.; Giugliano, D.; Esposito, K. Premature ejaculation is
associated with glycemic control in Type 1 diabetes. J. Sex. Med. 2015, 12, 93–99. [CrossRef] [PubMed]
57. Zulet, M.A.; Moreno-Aliaga, M.J.; Martinez, J.A. Dietary Determinants of Fat Mass and Body Composition.
In Adipose Tissue Biology; Symonds, M.E., Ed.; Springer: New York, NY, USA, 2012; pp. 271–315.
58. Carlsen, M.H.; Halvorsen, B.L.; Holte, K.; Bohn, S.K.; Dragland, S.; Sampson, L.; Willey, C.; Senoo, H.;
Umezono, Y.; Sanada, C.; et al. The total antioxidant content of more than 3100 foods, beverages, spices,
herbs and supplements used worldwide. Nutr. J. 2010, 9, 3. [CrossRef] [PubMed]
59. Harasym, J.; Oledzki, R. Effect of fruit and vegetable antioxidants on total antioxidant capacity of blood
plasma. Nutrition 2014, 30, 511–517. [CrossRef] [PubMed]
60. Maiorino, M.I.; Bellastella, G.; Petrizzo, M.; della Volpe, E.; Orlando, R.; Giugliano, D.; Esposito, K. Circulating
endothelial progenitor cells in type 1 diabetic patients with erectile dysfunction. Endocrine 2015, 49, 415–421.
[CrossRef] [PubMed]
61. Bahadoran, Z.; Golzarand, M.; Mirmiran, P.; Shiva, N.; Azizi, F. Dietary total antioxidant capacity and the
occurrence of metabolic syndrome and its components after a 3-year follow-up in adults: Tehran Lipid and
Glucose Study. Nutr. Metab. 2012, 9, 70. [CrossRef] [PubMed]
62. Chrysohoou, C.; Esposito, K.; Giugliano, D.; Panagiotakos, D.B. Peripheral Arterial Disease and
Cardiovascular Risk: The Role of Mediterranean Diet. Angiology 2015, 66, 708–710. [CrossRef] [PubMed]
63. De la Iglesia, R.; Lopez-Legarrea, P.; Celada, P.; Sanchez-Muniz, F.J.; Martinez, J.A.; Zulet, M.A. Beneficial
effects of the RESMENA dietary pattern on oxidative stress in patients suffering from metabolic syndrome
with hyperglycemia are associated to dietary TAC and fruit consumption. Int. J. Mol. Sci. 2013, 14, 6903–6919.
[CrossRef] [PubMed]
64. Lopez-Legarrea, P.; de la Iglesia, R.; Abete, I.; Bondia-Pons, I.; Navas-Carretero, S.; Forga, L.; Martinez, J.A.;
Zulet, M.A. Short-term role of the dietary total antioxidant capacity in two hypocaloric regimes on obese
with metabolic syndrome symptoms: The RESMENA randomized controlled trial. Nutr. Metab. 2013, 10, 22.
[CrossRef] [PubMed]
65. Puchau, B.; Zulet, M.A.; de Echavarri, A.G.; Hermsdorff, H.H.; Martinez, J.A. Dietary total antioxidant
capacity is negatively associated with some metabolic syndrome features in healthy young adults. Nutrition
2010, 26, 534–541. [CrossRef] [PubMed]
66. World Health Organization. Obesity: Preventing and Managing the Global Epidemic; Report of a WHO
Consultation; World Health Organization Technical Report Series; WHO: Geneva, Switzerland, 2000.
67. Tapsell, L.C.; Hemphill, I.; Cobiac, L.; Patch, C.S.; Sullivan, D.R.; Fenech, M.; Roodenrys, S.; Keogh, J.B.;
Clifton, P.M.; Williams, P.G.; et al. Health benefits of herbs and spices: The past, the present, the future.
Med. J. Aust. 2006, 185, S4–S24. [PubMed]
68. Abete, I.; Astrup, A.; Martinez, J.A.; Thorsdottir, I.; Zulet, M.A. Obesity and the metabolic syndrome: Role of
different dietary macronutrient distribution patterns and specific nutritional components on weight loss and
maintenance. Nutr. Rev. 2010, 68, 214–231. [CrossRef] [PubMed]
69. Ebbeling, C.B.; Swain, J.F.; Feldman, H.A.; Wong, W.W.; Hachey, D.L.; Garcia-Lago, E.; Ludwig, D.S. Effects
of dietary composition on energy expenditure during weight-loss maintenance. JAMA 2012, 307, 2627–2634.
[CrossRef] [PubMed]
70. Abete, I.; Goyenechea, E.; Zulet, M.A.; Martinez, J.A. Obesity and metabolic syndrome: Potential benefit
from specific nutritional components. Nutr. Metab. Cardiovasc. Dis. 2011, 21, B1–B15. [CrossRef] [PubMed]
71. Arciero, P.J.; Ormsbee, M.J.; Gentile, C.L.; Nindl, B.C.; Brestoff, J.R.; Ruby, M. Increased protein intake and
meal frequency reduces abdominal fat during energy balance and energy deficit. Obesity 2013, 21, 1357–1366.
[CrossRef] [PubMed]
72. Wikarek, T.; Chudek, J.; Owczarek, A.; Olszanecka-Glinianowicz, M. Effect of dietary macronutrients on
postprandial incretin hormone release and satiety in obese and normal-weight women. Br. J. Nutr. 2014, 111,
236–246. [CrossRef] [PubMed]
73. Bray, G.A.; Smith, S.R.; de Jonge, L.; Xie, H.; Rood, J.; Martin, C.K.; Most, M.; Brock, C.; Mancuso, S.;
Redman, L.M. Effect of dietary protein content on weight gain, energy expenditure, and body composition
during overeating: A randomized controlled trial. JAMA 2012, 307, 47–55. [CrossRef] [PubMed]
74. Westerterp-Plantenga, M.S.; Nieuwenhuizen, A.; Tome, D.; Soenen, S.; Westerterp, K.R. Dietary protein,
weight loss, and weight maintenance. Annu. Rev. Nutr. 2009, 29, 21–41. [CrossRef] [PubMed]
75. Koppes, L.L.; Boon, N.; Nooyens, A.C.; van Mechelen, W.; Saris, W.H. Macronutrient distribution over
a period of 23 years in relation to energy intake and body fatness. Br. J. Nutr. 2009, 101, 108–115. [CrossRef]
[PubMed]
76. De Jonge, L.; Bray, G.A.; Smith, S.R.; Ryan, D.H.; de Souza, R.J.; Loria, C.M.; Champagne, C.M.;
Williamson, D.A.; Sacks, F.M. Effect of diet composition and weight loss on resting energy expenditure in
the POUNDS LOST study. Obesity 2012, 20, 2384–2389. [CrossRef] [PubMed]
77. Stocks, T.; Angquist, L.; Hager, J.; Charon, C.; Holst, C.; Martinez, J.A.; Saris, W.H.; Astrup, A.; Sorensen, T.I.;
Larsen, L.H. TFAP2B-dietary protein and glycemic index interactions and weight maintenance after weight
loss in the DiOGenes trial. Hum. Hered. 2013, 75, 213–219. [CrossRef] [PubMed]
78. Giugliano, D.; Maiorino, M.I.; Esposito, K. Linking prediabetes and cancer: A complex issue. Diabetologia
2015, 58, 201–202. [CrossRef] [PubMed]
79. Bendtsen, L.Q.; Lorenzen, J.K.; Bendsen, N.T.; Rasmussen, C.; Astrup, A. Effect of dairy proteins on appetite,
energy expenditure, body weight, and composition: A review of the evidence from controlled clinical trials.
Adv. Nutr. 2013, 4, 418–438. [CrossRef] [PubMed]
80. Heer, M.; Egert, S. Nutrients other than carbohydrates: Their effects on glucose homeostasis in humans.
Diabetes Metab. Res. Rev. 2015, 31, 14–35. [CrossRef] [PubMed]
81. Layman, D.K.; Evans, E.M.; Erickson, D.; Seyler, J.; Weber, J.; Bagshaw, D.; Griel, A.; Psota, T.; Kris-Etherton, P.
A moderate-protein diet produces sustained weight loss and long-term changes in body composition and
blood lipids in obese adults. J. Nutr. 2009, 139, 514–521. [CrossRef] [PubMed]
82. Pedersen, A.N.; Kondrup, J.; Borsheim, E. Health effects of protein intake in healthy adults: A systematic
literature review. Food Nutr. Res. 2013, 57, 21245. [CrossRef] [PubMed]
83. Daly, R.M.; O’Connell, S.L.; Mundell, N.L.; Grimes, C.A.; Dunstan, D.W.; Nowson, C.A. Protein-enriched
diet, with the use of lean red meat, combined with progressive resistance training enhances lean tissue mass
and muscle strength and reduces circulating IL-6 concentrations in elderly women: A cluster randomized
controlled trial. Am. J. Clin. Nutr. 2014, 99, 899–910. [CrossRef] [PubMed]
84. Arciero, P.J.; Gentile, C.L.; Pressman, R.; Everett, M.; Ormsbee, M.J.; Martin, J.; Santamore, J.; Gorman, L.;
Fehling, P.C.; Vukovich, M.D.; et al. Moderate protein intake improves total and regional body composition
and insulin sensitivity in overweight adults. Metab. Clin. Exp. 2008, 57, 757–765. [CrossRef] [PubMed]
85. Gregory, S.M.; Headley, S.A.; Wood, R.J. Effects of dietary macronutrient distribution on vascular integrity in
obesity and metabolic syndrome. Nutr. Rev. 2011, 69, 509–519. [CrossRef] [PubMed]
86. Consenso FESNAD-SEEDO. Recomendaciones nutricionales basadas en la evidencia para la prevención y el
tratamiento del sobrepeso y la obesidad en adultos (Consenso FESNAD-SEEDO). Rev. Esp. Obes. 2011, 10, 36.
87. Jakubowicz, D.; Froy, O.; Wainstein, J.; Boaz, M. Meal timing and composition influence ghrelin levels,
appetite scores and weight loss maintenance in overweight and obese adults. Steroids 2012, 77, 323–331.
[CrossRef] [PubMed]
88. Schwarz, N.A.; Rigby, B.R.; La Bounty, P.; Shelmadine, B.; Bowden, R.G. A review of weight control strategies
and their effects on the regulation of hormonal balance. J. Nutr. Metab. 2011, 2011, 237932. [CrossRef]
[PubMed]
89. Ohkawara, K.; Cornier, M.A.; Kohrt, W.M.; Melanson, E.L. Effects of increased meal frequency on fat
oxidation and perceived hunger. Obesity 2013, 21, 336–343. [CrossRef] [PubMed]
90. Ekmekcioglu, C.; Touitou, Y. Chronobiological aspects of food intake and metabolism and their relevance on
energy balance and weight regulation. Obes. Rev. 2011, 12, 14–25. [CrossRef] [PubMed]
91. Lioret, S.; Touvier, M.; Lafay, L.; Volatier, J.L.; Maire, B. Are eating occasions and their energy content related
to child overweight and socioeconomic status? Obesity 2008, 16, 2518–2523. [CrossRef] [PubMed]
92. Bhutani, S.; Varady, K.A. Nibbling versus feasting: Which meal pattern is better for heart disease prevention?
Nutr. Rev. 2009, 67, 591–598. [CrossRef] [PubMed]
93. Leidy, H.J.; Tang, M.; Armstrong, C.L.; Martin, C.B.; Campbell, W.W. The effects of consuming frequent,
higher protein meals on appetite and satiety during weight loss in overweight/obese men. Obesity 2011, 19,
818–824. [CrossRef] [PubMed]
94. Mills, J.P.; Perry, C.D.; Reicks, M. Eating frequency is associated with energy intake but not obesity in midlife
women. Obesity 2011, 19, 552–559. [CrossRef] [PubMed]
95. Cameron, J.D.; Cyr, M.J.; Doucet, E. Increased meal frequency does not promote greater weight loss in subjects
who were prescribed an 8-week equi-energetic energy-restricted diet. Br. J. Nutr. 2010, 103, 1098–1101.
[CrossRef] [PubMed]
96. Smeets, A.J.; Lejeune, M.P.; Westerterp-Plantenga, M.S. Effects of oral fat perception by modified sham
feeding on energy expenditure, hormones and appetite profile in the postprandial state. Br. J. Nutr. 2009,
101, 1360–1368. [CrossRef] [PubMed]
97. Taylor, M.A.; Garrow, J.S. Compared with nibbling, neither gorging nor a morning fast affect short-term
energy balance in obese patients in a chamber calorimeter. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 519–528.
[CrossRef] [PubMed]
98. Smeets, A.J.; Westerterp-Plantenga, M.S. Acute effects on metabolism and appetite profile of one

Dr. Alex Jimenez's insight:

Some of the most dietary-strategies-treatment-metabolic dietary strategies and bioactive compounds employed in the treatment of MetS to date. For Answers to any questions you may have please call Dr. Jimenez at 915-850-0900

No comment yet.
Scooped by Dr. Alex Jimenez
Scoop.it!

The Role Of Epigenetic's In Obesity And Metabolic Disease

The Role Of Epigenetic's In Obesity And Metabolic Disease | Diet and Supplements | Scoop.it

Epigenetic Abstract:

The increased prevalence of obesity and related comorbidities is a major public health problem. While genetic factors undoubtedly play a role in determining individual susceptibility to weight gain and obesity, the identified genetic variants only explain part of the variation. This has led to growing interest in understanding the potential role of epigenetics as a mediator of gene-environment interactions underlying the development of obesity and its associated comorbidities. Initial evidence in support of a role of epigenetics in obesity and type 2 diabetes mellitus (T2DM) was mainly provided by animal studies, which reported epigenetic changes in key metabolically important tissues following high-fat feeding and epigenetic differences between lean and obese animals and by human studies which showed epigenetic changes in obesity and T2DM candidate genes in obese/diabetic individuals. More recently, advances in epigenetic methodologies and the reduced cost of epigenome-wide association studies (EWAS) have led to a rapid expansion of studies in human populations. These studies have also reported epigenetic differences between obese/T2DM adults and healthy controls and epigenetic changes in association with nutritional, weight loss, and exercise interventions. There is also increasing evidence from both human and animal studies that the relationship between perinatal nutritional exposures and later risk of obesity and T2DM may be mediated by epigenetic changes in the offspring. The aim of this review is to summarize the most recent developments in this rapidly moving field, with a particular focus on human EWAS and studies investigating the impact of nutritional and lifestyle factors (both pre- and postnatal) on the epigenome and their relationship to metabolic health outcomes. The difficulties in distinguishing consequence from causality in these studies and the critical role of animal models for testing causal relationships and providing insight into underlying mechanisms are also addressed. In summary, the area of epigenetics and metabolic health has seen rapid developments in a short space of time. While the outcomes to date are promising, studies are ongoing, and the next decade promises to be a time of productive research into the complex interactions between the genome, epigenome, and environment as they relate to metabolic disease.

 

Keywords: Epigenetics, DNA methylation, Obesity, Type 2 diabetes, Developmental programming

Introduction

Obesity is a complex, multifactorial disease, and better understanding of the mechanisms underlying the interactions between lifestyle, environment, and genetics is critical for developing effective strategies for prevention and treatment [1].

 

In a society where energy-dense food is plentiful and the need for physical activity is low, there is a wide variation in individuals’ susceptibility to develop obesity and metabolic health problems. Estimates of the role of heredity in this variation are in the range of 40–70 %, and while large genome-wide association studies (GWAS) have identified a number of genetic loci associated with obesity risk, the ~100 most common genetic variants only account for a few percent of variance in obesity [2, 3]. Genome-wide estimates are higher, accounting for ~20 % of the variation [3]; however, a large portion of the heritability remains unexplained.

 

Recently, attention has turned to investigating the role of epigenetic changes in the etiology of obesity. It has been argued that the epigenome may represent the mechanistic link between genetic variants and environmental factors in determining obesity risk and could help explain the “missing heritability.” The first human epigenetic studies were small and only investigated a limited number of loci. While this generally resulted in poor reproducibility, some of these early findings, for instance the relationship between PGC1A methylation and type 2 diabetes mellitus (T2DM) [4] and others as discussed in van Dijk et al. [5], have been replicated in later studies. Recent advances and increased affordability of high- throughput technologies now allow for large-scale epigenome wide association studies (EWAS) and integration of different layers of genomic information to explore the complex interactions between the genotype, epigenome, transcriptome, and the environment [6–9]. These studies are still in their infancy, but the results thus far have shown promise in helping to explain the variation in obesity susceptibility.

 

There is increasing evidence that obesity has develop mental origins, as exposure to a suboptimal nutrient supply before birth or in early infancy is associated with an increased risk of obesity and metabolic disease in later life [10–13]. Initially, animal studies demonstrated that a range of early life nutritional exposures, especially those experienced early in gestation, could induce epigenetic changes in key metabolic tissues of the offspring that persisted after birth and result in permanent alterations in gene function [13–17]. Evidence is emerging to support the existence of the same mechanism in humans. This has led to a search for epigenetic marks present early in life that predict later risk of metabolic disease, and studies to determine whether epigenetic programming of metabolic disease could be prevented or reversed in later life.

 

This review provides an update of our previous systematic review of studies on epigenetics and obesity in humans [5]. Our previous review showcased the promising outcomes of initial studies, including the first potential epigenetic marks for obesity that could be detected at birth (e.g., RXRA) [18]. However, it also highlighted the limited reproducibility of the findings and the lack of larger scale longitudinal investigations. The current review focuses on recent developments in this rapidly moving field and, in particular, on human EWAS and studies investigating the impact of (pre- and postnatal) nutritional and lifestyle factors on the epigenome and the emerging role of epigenetics in the pathology of obesity. We also address the difficulties in identifying causality in these studies and the importance of animal models in providing insight into mechanisms.

Review

Epigenetic Changes In Animal Models Of Obesity

Animal models provide unique opportunities for highly controlled studies that provide mechanistic insight into the role of specific epigenetic marks, both as indicators of current metabolic status and as predictors of the future risk of obesity and metabolic disease. A particularly important aspect of animal studies is that they allow for the assessment of epigenetic changes within target tissues, including the liver and hypothalamus, which is much more difficult in humans. Moreover, the ability to harvest large quantities of fresh tissue makes it possible to assess multiple chromatin marks as well as DNA methylation. Some of these epigenetic modifications either alone or in combination may be responsive to environmental programming. In animal models, it is also possible to study multiple generations of offspring and thus enable differentiation between trans-generational and intergenerational transmission of obesity risk mediated by epigenetic memory of parental nutritional status, which cannot be easily distinguished in human studies. We use the former term for meiotic transmission of risk in the absence of continued exposure while the latter primarily entails direct transmission of risk through metabolic reprogramming of the fetus or gametes.

 

Animal studies have played a critical role in our current understanding of the role of epigenetics in the developmental origins of obesity and T2DM. Both increased and decreased maternal nutrition during pregnancy have been associated with increased fat deposition in offspring of most mammalian species studied to date (reviewed in [11, 13–15, 19]). Maternal nutrition during pregnancy not only has potential for direct effects on the fetus, it also may directly impact the developing oocytes of female fetuses and primordial germ cells of male fetuses and therefore could impact both the off- spring and grand-offspring. Hence, multigenerational data are usually required to differentiate between maternal intergenerational and trans-generational transmission mechanisms.

 

Table 1 summarizes a variety of animal models that have been used to provide evidence of metabolic and epigenetic changes in offspring associated with the parental plane of nutrition. It also contains information pertaining to studies identifying altered epigenetic marks in adult individuals who undergo direct nutritional challenges. The table is structured by suggested risk transmission type.

(i) Epigenetic Changes In Offspring Associated With Maternal Nutrition During Gestation

Maternal nutritional supplementation, undernutrition, and over nutrition during pregnancy can alter fat deposition and energy homeostasis in offspring [11, 13–15, 19]. Associated with these effects in the offspring are changes in DNA methylation, histone post-translational modifications, and gene expression for several target genes, especially genes regulating fatty acid metabolism and insulin signaling [16, 17, 20–30]. The diversity of animal models used in these studies and the common metabolic pathways impacted suggest an evolutionarily conserved adaptive response mediated by epigenetic modification. However, few of the specific identified genes and epigenetic changes have been cross-validated in related studies, and large-scale genome-wide investigations have typically not been applied. A major hindrance to comparison of these studies is the different develop mental windows subjected to nutritional challenge, which may cause considerably different outcomes. Proof that the epigenetic changes are causal rather than being associated with offspring phenotypic changes is also required. This will necessitate the identification of a parental nutritionally induced epigenetic “memory” response that precedes development of the altered phenotype in offspring.

(ii)Effects Of Paternal Nutrition On Offspring Epigenetic Marks

Emerging studies have demonstrated that paternal plane of nutrition can impact offspring fat deposition and epigenetic marks [31–34]. One recent investigation using mice has demonstrated that paternal pre-diabetes leads to increased susceptibility to diabetes in F1 offspring with associated changes in pancreatic gene expression and DNA methylation linked to insulin signaling [35]. Importantly, there was an overlap of these epigenetic changes in pancreatic islets and sperm suggesting germ line inheritance. However, most of these studies, although intriguing in their implications, are limited in the genomic scale of investigation and frequently show weak and somewhat transient epigenetic alterations associated with mild metabolic phenotypes in offspring.

(iii)Potential Trans-generational Epigenetic Changes Promoting Fat Deposition In Offspring

Stable transmission of epigenetic information across multiple generations is well described in plant systems and C. elegans, but its significance in mammals is still much debated [36, 37]. An epigenetic basis for grand- parental transmission of phenotypes in response to dietary exposures has been well established, including in livestock species [31]. The most influential studies demonstrating effects of epigenetic transmission impacting offspring phenotype have used the example of the viable yellow agouti (Avy) mouse [38]. In this mouse, an insertion of a retrotransposon upstream of the agouti gene causes its constitutive expression and consequent yellow coat color and adult onset obesity. Maternal transmission through the germ line results in DNA methylation mediated silencing of agouti expression resulting in wild-type coat color and lean phenotype of the offspring [39, 40]. Importantly, subsequent studies in these mice demonstrated that maternal exposure to methyl donors causes a shift in coat color [41]. One study has reported transmission of a phenotype to the F3 generation and alterations in expression of large number of genes in response to protein restriction in F0 [42]; however, alterations in expression were highly variable and a direct link to epigenetic changes was not identified in this system.

(iv) Direct Exposure Of Individuals To Excess Nutrition In Postnatal Life

While many studies have identified diet-associated epigenetic changes in animal models using candidate site-specific regions, there have been few genome-wide analyses undertaken. A recent study focussed on determining the direct epigenetic impact of high-fat diets/ diet-induced obesity in adult mice using genome-wide gene expression and DNA methylation analyses [43]. This study identified 232 differentially methylated regions (DMRs) in adipocytes from control and high-fat fed mice. Importantly, the corresponding human regions for the murine DMRs were also differentially methylated in adipose tissue from a population of obese and lean humans, thereby highlighting the remarkable evolutionary conservation of these regions. This result emphasizes the likely importance of the identified DMRs in regulating energy homeostasis in mammals.

Human Studies

 

Drawing on the evidence from animal studies and with the increasing availability of affordable tools for genome- wide analysis, there has been a rapid expansion of epigenome studies in humans. These studies have mostly focused on the identification of site-specific differences in DNA methylation that are associated with metabolic phenotypes.

 

A key question is the extent to which epigenetic modifications contribute to the development of the metabolic phenotype, rather than simply being a con- sequence of it (Fig. 1). Epigenetic programming could contribute to obesity development, as well as playing a role in consequent risk of cardiovascular and metabolic problems. In human studies, it is difficult to prove causality [44], but inferences can be made from a number of lines of evidence:

 

(i) Genetic association studies. Genetic polymorphisms that are associated with an increased risk of developing particular conditions are a priori linked to the causative genes. The presence of differential methylation in such regions infers functional relevance of these epigenetic changes in controlling expression of the proximal gene(s). There are strong cis-acting genetic effects underpinning much epigenetic variation [7, 45], and in population-based studies, methods that use genetic surrogates to infer a causal or mediating role of epigenome differences have been applied [7, 46–48]. The use of familial genetic information can also lead to the identification of potentially causative candidate regions showing phenotype-related differential methylation [49].

 

(ii)Timing of epigenetic changes. The presence of an epigenetic mark prior to development of a phenotype is an essential feature associated with causality. Conversely, the presence of a mark in association with obesity, but not before its development, can be used to exclude causality but would not exclude a possible role in subsequent obesity-related pathology.

 

(iii)Plausible inference of mechanism. This refers to epigenetic changes that are associated with altered expression of genes with an established role in regulating the phenotype of interest. One such example is the association of methylation at two CpG sites at the CPT1A gene with circulating triglyceride levels [50]. CPT1A encodes carnitine palmitoyltransferase 1A, an enzyme with a central role in fatty acid metabolism, and this is strongly indicative that differential methylation of this gene may be causally related to the alterations in plasma triglyceride concentrations.

Epigenome-Wide Association Studies: Identifying Epigenetic Biomarkers Of Metabolic Health

A number of recent investigations have focused on exploring associations between obesity/metabolic diseases and DNA methylation across the genome (Table 2). The largest published EWAS so far, including a total of 5465 individuals, identified 37 methylation sites in blood that were associated with body mass index (BMI), including sites in CPT1A, ABCG1, and SREBF1 [51]. Another large-scale study showed consistent associations between BMI and methylation in HIF3A in whole blood and adipose tissue [52], a finding which was also partially replicated in other studies [9, 51]. Other recently reported associations between obesity-related measures and DNA methylation include (i) DNA methylation differences between lean and obese individuals in LY86 in blood leukocytes [53]; (ii) associations between PGC1A promoter methylation in whole blood of children and adiposity 5 years later [54]; (iii) associations between waist-hip ratio and ADRB3 methylation in blood [55]; and (iv) associations between BMI, body fat distribution measures, and multiple DNA methylation sites in adipose tissue [9, 56]. EWAS have also shown associations between DNA methylation sites and blood lipids [55, 57–59], serum metabolites [60], insulin resistance [9, 61], and T2DM [48, 62, 63] (Table 2).

 

From these studies, altered methylation of PGC1A, HIF3A, ABCG1, and CPT1A and the previously described RXRA [18] have emerged as biomarkers associated with, or perhaps predictive of, metabolic health that are also plausible candidates for a role in development of metabolic disease.

Interaction Between Genotype And The Epigenome

Epigenetic variation is highly influenced by the underlying genetic variation, with genotype estimated to explain ~20–40 % of the variation [6, 8]. Recently, a number of studies have begun to integrate methylome and genotype data to identify methylation quantitative trait loci (meQTL) associated with disease phenotypes. For instance, in adipose tissue, an meQTL overlapping with a BMI genetic risk locus has been identified in an enhancer element upstream of ADCY3 [8]. Other studies have also identified overlaps between known obesity and T2DM risk loci and DMRs associated with obesity and T2DM [43, 48, 62]. Methylation of a number of such DMRs was also modulated by high-fat feeding in mice [43] and weight loss in humans [64]. These results identify an intriguing link between genetic variations linked with disease susceptibility and their association with regions of the genome that undergo epigenetic modifications in response to nutritional challenges, implying a causal relationship. The close connection between genetic and epigenetic variation may signify their essential roles in generating individual variation [65, 66]. However, while these findings suggest that DNA methylation may be a mediator of genetic effects, it is also important to consider that both genetic and epigenetic processes could act independently on the same genes. Twin studies [8, 63, 67] can provide important insights and indicate that inter-individual differences in levels of DNA methylation arise predominantly from non-shared environment and stochastic influences, minimally from shared environmental effects, but also with a significant impact of genetic variation.

The Impact Of The Prenatal And Postnatal Environment On The Epigenome

Prenatal environment: Two recently published studies made use of human populations that experienced “natural” variations in nutrient supply to study the impact of maternal nutrition before or during pregnancy on DNA methylation in the offspring [68, 69]. The first study used a Gambian mother-child cohort to show that both seasonal variations in maternal methyl donor intake during pregnancy and maternal pre-pregnancy BMI were associated with altered methylation in the infants [69]. The second study utilized adult offspring from the Dutch Hunger Winter cohort to investigate the effect of prenatal exposure to an acute period of severe maternal undernutrition on DNA methylation of genes involved in growth and metabolism in adulthood [68]. The results highlighted the importance of the timing of the exposure in its impact on the epigenome, since significant epigenetic effects were only identified in individuals exposed to famine during early gestation. Importantly, the epigenetic changes occurred in conjunction with increased BMI; however, it was not possible to establish in this study whether these changes were present earlier in life or a consequence of the higher BMI.

 

Other recent studies have provided evidence that prenatal over-nutrition and an obese or diabetic maternal environment are also associated with DNA methylation changes in genes related to embryonic development, growth, and metabolic disease in the offspring [70–73].

 

While human data are scarce, there are indications that paternal obesity can lead to altered methylation of imprinted genes in the newborn [74], an effect thought to be mediated via epigenetic changes acquired during spermatogenesis.

 

Postnatal environment: The epigenome is established de novo during embryonic development, and therefore, the prenatal environment most likely has the most significant impact on the epigenome. However, it is now clear that changes do occur in the “mature” epigenome under the influence of a range of conditions, including aging, exposure to toxins, and dietary alterations. For example, changes in DNA methylation in numerous genes in skeletal muscle and PGC1A in adipose tissue have been demonstrated in response to a high-fat diet [75, 76]. Interventions to lose body fat mass have also been associated with changes in DNA methylation. Studies have reported that the DNA methylation profiles of adipose tissue [43, 64], peripheral blood mononuclear cells [77], and muscle tissue [78] in formerly obese patients become more similar to the profiles of lean subjects following weight loss. Weight loss surgery also partially reversed non-alcoholic fatty liver disease-associated methylation changes in liver [79] and in another study led to hypomethylation of multiple obesity candidate genes, with more pronounced effects in subcutaneous compared to omental (visceral) fat [64]. Accumulating evidence suggests that exercise interventions can also influence DNA methylation. Most of these studies have been conducted in lean individuals [80–82], but one exercise study in obese T2DM subjects also demonstrated changes in DNA methylation, including in genes involved in fatty acid and glucose transport [83]. Epigenetic changes also occur with aging, and recent data suggest a role of obesity in augmenting them [9, 84, 85]. Obesity accelerated the epigenetic age of liver tissue, but in contrast to the findings described above, this effect was not reversible after weight loss [84].

 

Collectively, the evidence in support of the capacity to modulate the epigenome in adults suggests that there may be the potential to intervene in postnatal life to modulate or reverse adverse epigenetic programming.

Effect Sizes And Differences Between Tissue Types

DNA methylation changes associated with obesity or induced by diet or lifestyle interventions and weight loss are generally modest (<15 %), although this varies depending on the phenotype and tissue studied. For instance, changes greater than 20 % have been reported in adipose tissue after weight loss [64] and associations between HIF3A methylation and BMI in adipose tissue were more pronounced than in blood [52].

 

The biological relevance of relatively small methylation changes has been questioned. However, in tissues consisting of a mixture of cell types, a small change in DNA methylation may actually reflect a significant change in a specific cell fraction. Integration of epigenome data with transcriptome and other epigenetic data, such as histone modifications, is important, since small DNA methylation changes might reflect larger changes in chromatin structure and could be associated with broader changes in gene expression. The genomic context should also be considered; small changes within a regulatory element such as a promotor, enhancer, or insulator may have functional significance. In this regard, DMRs for obesity, as well as regions affected by prenatal famine exposure and meQTL for metabolic trait loci have been observed to overlap enhancer elements [8, 43, 68]. There is evidence that DNA methylation in famine-associated regions could indeed affect enhancer activity [68], supporting a role of nutrition-induced methylation changes in gene regulation.

 

A major limitation in many human studies is that epigenetic marks are often assessed in peripheral blood, rather than in metabolically relevant tissues (Fig. 2). The heterogeneity of blood is an issue, since different cell populations have distinct epigenetic signatures, but algorithms have been developed to estimate the cellular composition to overcome this problem [86]. Perhaps more importantly, epigenetic marks in blood cells may not necessarily report the status of the tissues of primary interest. Despite this, recent studies have provided clear evidence of a relationship between epigenetic marks in blood cells and BMI. In the case of HIF3A for which the level of methylation (beta-value) in the study population ranged from 0.14–0.52, a 10 % increase in methylation was associated with a BMI increase of 7.8 % [52]. Likewise, a 10 % difference in PGC1A methylation may predict up to 12 % difference in fat mass [54].

Conclusions

The study of the role of epigenetics in obesity and metabolic disease has expanded rapidly in recent years, and evidence is accumulating of a link between epigenetic modifications and metabolic health outcomes in humans. Potential epigenetic biomarkers associated with obesity and metabolic health have also emerged from recent studies. The validation of epigenetic marks in multiple cohorts, the fact that several marks are found in genes with a plausible function in obesity and T2DM development, as well as the overlap of epigenetic marks with known obesity and T2DM genetic loci strengthens the evidence that these associations are real. Causality has so far been difficult to establish; however, regardless of whether the associations are causal, the identified epigenetic marks may still be relevant as biomarkers for obesity and metabolic disease risk.

 

Effect sizes in easily accessible tissues such as blood are small but do seem reproducible despite variation in ethnicity, tissue type, and analysis methods [51]. Also, even small DNA methylation changes may have biological significance. An integrative “omics” approach will be crucial in further unraveling the complex interactions between the epigenome, transcriptome, genome, and metabolic health. Longitudinal studies, ideally spanning multiple generations, are essential to establishing causal relationships. We can expect more such studies in the future, but this will take time.

 

While animal studies continue to demonstrate an effect of early life nutritional exposure on the epigenome and metabolic health of the offspring, human data are still limited. However, recent studies have provided clear evidence that exposure to suboptimal nutrition during specific periods of prenatal development is associated with methylation changes in the offspring and therefore have the potential to influence adult phenotype. Animal studies will be important to verify human findings in a more controlled setting, help determine whether the identified methylation changes have any impact on metabolic health, and unravel the mechanisms underlying this intergenerational/transgenerational epigenetic regulation. The identification of causal mechanisms underlying metabolic memory responses, the mode of transmission of the phenotypic effects into successive generations, the degree of impact and stability of the transmitted trait, and the identification of an overarching and unifying evolutionary context also remain important questions to be addressed. The latter is often encapsulated by the predictive adaptive response hypothesis, i.e., a response to a future anticipated environment that increases fitness of the population. However, this hypothesis has increasingly been questioned as there is limited evidence for increased fitness later in life [87].

 

In summary, outcomes are promising, as the epigenetic changes are linked with adult metabolic health and they act as a mediator between altered prenatal nutrition and subsequent increased risk of poor metabolic health outcomes. New epigenetic marks have been identified that are associated with measures of metabolic health. Integration of different layers of genomic information has added further support to causal relationships, and there have been further studies showing effects of pre- and postnatal environment on the epigenome and health. While many important questions remain, recent methodological advances have enabled the types of large-scale population-based studies that will be required to address the knowledge gaps. The next decade promises to be a period of major activity in this important research area.

 

Susan J. van Dijk1, Ross L. Tellam2, Janna L. Morrison3, Beverly S. Muhlhausler4,5† and Peter L. Molloy1*†

 

Competing interests

The authors declare that they have no competing interests.

 

Authors’ contributions
All authors contributed to the drafting and critical revision of the manuscript, and all authors read and approved the final manuscript.

 

Authors’ information
Beverly S. Muhlhausler and Peter L. Molloy are joint last authors.

 

Acknowledgements

This work has been supported by a grant from the Science and Industry Endowment Fund (Grant RP03-064). JLM and BSM are supported by the National Health and Medical Research Council Career Development Fellowships (JLM, APP1066916; BSM, APP1004211). We thank Lance Macaulay and Sue Mitchell for critical reading and comments on the manuscript.

 

Author details

1CSIRO Food and Nutrition Flagship, PO Box 52, North Ryde, NSW 1670, Australia. 2CSIRO Agriculture Flagship, 306 Carmody Road, St Lucia, QLD 4067, Australia. 3Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia 4FOODplus Research Centre, Waite Campus, The University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia. 5Women’s and Children’s Health Research Institute, 72 King William Road, North Adelaide, SA 5006, Australia.

 

References:

1. WHO. WHO | Overweight and obesity. http://www.who.int/gho/ncd/<br />
risk_factors/overweight/en/index.html. Accessed 29 January 2015.<br />
2. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery.<br />
Am J Hum Genet. 2012;90:7–24.<br />
3. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic<br />
studies of body mass index yield new insights for obesity biology. Nature.<br />
2015;518:197–206.<br />
4. Ling C, Del Guerra S, Lupi R, Rönn T, Granhall C, Luthman H, et al.<br />
Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and<br />
effect on insulin secretion. Diabetologia. 2008;51:615–22.<br />
5. Van Dijk SJ, Molloy PL, Varinli H, Morrison JL, Muhlhausler BS. Epigenetics<br />
and human obesity. Int J Obes (Lond). 2015;39:85–97.<br />
6. Teh AL, Pan H, Chen L, Ong M-L, Dogra S, Wong J, et al. The effect of<br />
genotype and in utero environment on interindividual variation in neonate<br />
DNA methylomes. Genome Res. 2014;24:1064–74.<br />
7. Olsson AH, Volkov P, Bacos K, Dayeh T, Hall E, Nilsson EA, et al. Genomewide<br />
associations between genetic and epigenetic variation influence<br />
mRNA expression and insulin secretion in human pancreatic islets. PLoS<br />
Genet. 2014;10:e1004735.<br />
8. Grundberg E, Meduri E, Sandling JK, Hedman AK, Keildson S, Buil A, et al.<br />
Global analysis of DNA methylation variation in adipose tissue from twins<br />
reveals links to disease-associated variants in distal regulatory elements.<br />
Am J Hum Genet. 2013;93:876–90.<br />
9. Ronn T, Volkov P, Gillberg L, Kokosar M, Perfilyev A, Jacobsen AL, et al.<br />
Impact of age, BMI and HbA1c levels on the genome-wide DNA<br />
methylation and mRNA expression patterns in human adipose tissue<br />
and identification of epigenetic biomarkers in blood. Hum Mol Genet.<br />
2015;24:3792–813.<br />
10. Waterland RA, Michels KB. Epigenetic epidemiology of the developmental<br />
origins hypothesis. Annu Rev Nutr. 2007;27:363–88.<br />
11. McMillen IC, Rattanatray L, Duffield JA, Morrison JL, MacLaughlin SM, Gentili<br />
S, et al. The early origins of later obesity: pathways and mechanisms. Adv<br />
Exp Med Biol. 2009;646:71–81.<br />
12. Ravelli A, van der Meulen J, Michels R, Osmond C, Barker D, Hales C, et al.<br />
Glucose tolerance in adults after prenatal exposure to famine. Lancet.<br />
1998;351:173–7.<br />
13. McMillen IC, MacLaughlin SM, Muhlhausler BS, Gentili S, Duffield JL,<br />
Morrison JL. Developmental origins of adult health and disease: the role of<br />
periconceptional and foetal nutrition. Basic Clin Pharmacol Toxicol.<br />
2008;102:82–9.<br />
14. Zhang S, Rattanatray L, McMillen IC, Suter CM, Morrison JL. Periconceptional<br />
nutrition and the early programming of a life of obesity or adversity. Prog<br />
Biophys Mol Biol. 2011;106:307–14.<br />
15. Bouret S, Levin BE, Ozanne SE. Gene-environment interactions controlling<br />
energy and glucose homeostasis and the developmental origins of obesity.<br />
Physiol Rev. 2015;95:47–82.<br />
16. Borengasser SJ, Zhong Y, Kang P, Lindsey F, Ronis MJ, Badger TM, et al.<br />
Maternal obesity enhances white adipose tissue differentiation and alters<br />
genome-scale DNA methylation in male rat offspring. Endocrinology.<br />
2013;154:4113–25.<br />
17. Gluckman PD, Lillycrop KA, Vickers MH, Pleasants AB, Phillips ES, Beedle AS,<br />
et al. Metabolic plasticity during mammalian development is directionally<br />
dependent on early nutritional status. Proc Natl Acad Sci U S A.<br />
2007;104:12796–800.<br />
18. Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C,<br />
et al. Epigenetic gene promoter methylation at birth is associated with<br />
child’s later adiposity. Diabetes. 2011;60:1528–34.<br />
19. McMillen IC, Adam CL, Muhlhausler BS. Early origins of obesity:<br />
programming the appetite regulatory system. J Physiol. 2005;565(Pt 1):9–17.<br />
20. Begum G, Stevens A, Smith EB, Connor K, Challis JR, Bloomfield F, et al.<br />
Epigenetic changes in fetal hypothalamic energy regulating pathways are<br />
associated with maternal undernutrition and twinning. FASEB J.<br />
2012;26:1694–703.<br />
21. Ge ZJ, Liang QX, Hou Y, Han ZM, Schatten H, Sun QY, et al. Maternal obesity<br />
and diabetes may cause DNA methylation alteration in the spermatozoa of<br />
offspring in mice. Reprod Biol Endocrinol. 2014;12:29.<br />
22. Jousse C, Parry L, Lambert-Langlais S, Maurin AC, Averous J, Bruhat A, et al.<br />
Perinatal undernutrition affects the methylation and expression of the leptin<br />
gene in adults: implication for the understanding of metabolic syndrome.<br />
FASEB J. 2011;25:3271–8.<br />
23. Lan X, Cretney EC, Kropp J, Khateeb K, Berg MA, Penagaricano F, et al.<br />
Maternal diet during pregnancy induces gene expression and DNA<br />
methylation changes in fetal tissues in sheep. Front Genet. 2013;4:49.<br />
24. Li CC, Young PE, Maloney CA, Eaton SA, Cowley MJ, Buckland ME, et al.<br />
Maternal obesity and diabetes induces latent metabolic defects and<br />
widespread epigenetic changes in isogenic mice. Epigenetics. 2013;8:602–11.<br />
25. Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein<br />
restriction of pregnant rats induces and folic acid supplementation prevents<br />
epigenetic modification of hepatic gene expression in the offspring. J Nutr.<br />
2005;135:1382–6.<br />
26. Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E, et al. In utero<br />
effects. In utero undernourishment perturbs the adult sperm methylome<br />
and intergenerational metabolism. Science. 2014;345(80):1255903.<br />
27. Suter M, Bocock P, Showalter L, Hu M, Shope C, McKnight R, et al.<br />
Epigenomics: maternal high-fat diet exposure in utero disrupts<br />
peripheral circadian gene expression in nonhuman primates. FASEB J.<br />
2011;25:714–26.<br />
28. Suter MA, Ma J, Vuguin PM, Hartil K, Fiallo A, Harris RA, et al. In utero<br />
exposure to a maternal high-fat diet alters the epigenetic histone code in a<br />
murine model. Am J Obs Gynecol. 2014;210:463 e1–463 e11.<br />
29. Tosh DN, Fu Q, Callaway CW, McKnight RA, McMillen IC, Ross MG, et al.<br />
Epigenetics of programmed obesity: alteration in IUGR rat hepatic IGF1<br />
mRNA expression and histone structure in rapid vs. delayed postnatal<br />
catch-up growth. Am J Physiol Gastrointest Liver Physiol.<br />
2010;299:G1023–9.<br />
30. Sandovici I, Smith NH, Nitert MD, Ackers-Johnson M, Uribe-Lewis S, Ito Y,<br />
et al. Maternal diet and aging alter the epigenetic control of a promoterenhancer<br />
interaction at the Hnf4a gene in rat pancreatic islets. Proc Natl<br />
Acad Sci U S A. 2011;108:5449–54.<br />
31. Braunschweig M, Jagannathan V, Gutzwiller A, Bee G. Investigations on<br />
transgenerational epigenetic response down the male line in F2 pigs. PLoS<br />
One. 2012;7, e30583.<br />
32. Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, et al. Paternally<br />
induced transgenerational environmental reprogramming of metabolic<br />
gene expression in mammals. Cell. 2010;143:1084–96.<br />
33. Ost A, Lempradl A, Casas E, Weigert M, Tiko T, Deniz M, et al. Paternal diet<br />
defines offspring chromatin state and intergenerational obesity. Cell.<br />
2014;159:1352–64.<br />
34. Martínez D, Pentinat T, Ribó S, Daviaud C, Bloks VW, Cebrià J, et al. In utero<br />
undernutrition in male mice programs liver lipid metabolism in the secondgeneration<br />
offspring involving altered Lxra DNA methylation. Cell Metab.<br />
2014;19:941–51.<br />
35. Wei Y, Yang C-R, Wei Y-P, Zhao Z-A, Hou Y, Schatten H, et al. Paternally<br />
induced transgenerational inheritance of susceptibility to diabetes in<br />
mammals. Proc Natl Acad Sci U S A. 2014;111:1873–8.<br />
36. Grossniklaus U, Kelly WG, Kelly B, Ferguson-Smith AC, Pembrey M, Lindquist<br />
S. Transgenerational epigenetic inheritance: how important is it? Nat Rev<br />
Genet. 2013;14:228–35.<br />
37. Pembrey M, Saffery R, Bygren LO. Human transgenerational responses to<br />
early-life experience: potential impact on development, health and<br />
biomedical research. J Med Genet. 2014;51:563–72.<br />
38. Wolff GL, Kodell RL, Moore SR, Cooney CA. Maternal epigenetics and methyl<br />
supplements affect agouti gene expression in Avy/a mice. FASEB J.<br />
1998;12:949–57.<br />
39. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility.<br />
Nat Rev Genet. 2007;8:253–62.<br />
40. Morgan HD, Sutherland HG, Martin DI, Whitelaw E. Epigenetic inheritance at<br />
the agouti locus in the mouse. Nat Genet. 1999;23:314–8.<br />
41. Cropley JE, Suter CM, Beckman KB, Martin DI. Germ-line epigenetic<br />
modification of the murine A vy allele by nutritional supplementation. Proc<br />
Natl Acad Sci U S A. 2006;103:17308–12.<br />
42. Hoile SP, Lillycrop KA, Thomas NA, Hanson MA, Burdge GC. Dietary protein<br />
restriction during F0 pregnancy in rats induces transgenerational changes in<br />
the hepatic transcriptome in female offspring. PLoS One. 2011;6, e21668.<br />
43. Multhaup ML, Seldin MM, Jaffe AE, Lei X, Kirchner H, Mondal P, et al. Mousehuman<br />
experimental epigenetic analysis unmasks dietary targets and<br />
genetic liability for diabetic phenotypes. Cell Metab. 2015;21:138–49.<br />
44. Michels KB, Binder AM, Dedeurwaerder S, Epstein CB, Greally JM, Gut I, et al.<br />
Recommendations for the design and analysis of epigenome-wide<br />
association studies. Nat Methods. 2013;10:949–55.<br />
45. Dayeh TA, Olsson AH, Volkov P, Almgren P, Rönn T, Ling C. Identification of<br />
CpG-SNPs associated with type 2 diabetes and differential DNA methylation<br />
in human pancreatic islets. Diabetologia. 2013;56:1036–46.<br />
46. Relton CL, Davey Smith G. Two-step epigenetic Mendelian randomization: a<br />
strategy for establishing the causal role of epigenetic processes in pathways<br />
to disease. Int J Epidemiol. 2012;41:161–76.<br />
47. Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, et al.<br />
Epigenome-wide association data implicate DNA methylation as an<br />
intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol.<br />
2013;31:142–7.<br />
48. Yuan W, Xia Y, Bell CG, Yet I, Ferreira T, Ward KJ, et al. An integrated<br />
epigenomic analysis for type 2 diabetes susceptibility loci in monozygotic<br />
twins. Nat Commun. 2014;5:5719.<br />
49. Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, Nilsson E, et al. Impact of an<br />
exercise intervention on DNA methylation in skeletal muscle from firstdegree<br />
relatives of patients with type 2 diabetes. Diabetes. 2012;61:3322–32.<br />
50. Gagnon F, Aïssi D, Carrié A, Morange P-E, Trégouët D-A. Robust validation of<br />
methylation levels association at CPT1A locus with lipid plasma levels.<br />
J Lipid Res. 2014;55:1189–91.<br />
51. Demerath EW, Guan W, Grove ML, Aslibekyan S, Mendelson M, Zhou Y-H,<br />
et al. Epigenome-wide association atudy (EWAS) of BMI, BMI change, and<br />
waist circumference in African American adults identifies multiple replicated<br />
loci. Hum Mol Genet. 2015:ddv161–.<br />
52. Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aïssi D, Wahl S, et al. DNA<br />
methylation and body-mass index: a genome-wide analysis. Lancet.<br />
2014;6736:1–9.<br />
53. Su S, Zhu H, Xu X, Wang X, Dong Y, Kapuku G, et al. DNA methylation of<br />
the LY86 gene is associated with obesity, insulin resistance, and<br />
inflammation. Twin Res Hum Genet. 2014;17:183–91.<br />
54. Clarke-Harris R, Wilkin TJ, Hosking J, Pinkney J, Jeffery AN, Metcalf BS, et al.<br />
PGC1α promoter methylation in blood at 5–7 years predicts adiposity from<br />
9 to 14 years (EarlyBird 50). Diabetes. 2014;63:2528–37.<br />
55. Guay S-P, Brisson D, Lamarche B, Biron S, Lescelleur O, Biertho L, et al.<br />
ADRB3 gene promoter DNA methylation in blood and visceral adipose<br />
tissue is associated with metabolic disturbances in men. Epigenomics.<br />
2014;6:33–43.<br />
56. Agha G, Houseman EA, Kelsey KT, Eaton CB, Buka SL, Loucks EB. Adiposity is<br />
associated with DNA methylation profile in adipose tissue. Int J Epidemiol.<br />
2014:1–11.<br />
57. Irvin MR, Zhi D, Joehanes R, Mendelson M, Aslibekyan S, Claas SA, et al.<br />
Epigenome-wide association study of fasting blood lipids in the genetics of<br />
lipid-lowering drugs and diet network study. Circulation. 2014;130:565–72.<br />
58. Frazier-Wood AC, Aslibekyan S, Absher DM, Hopkins PN, Sha J, Tsai MY, et al.<br />
Methylation at CPT1A locus is associated with lipoprotein subfraction<br />
profiles. J Lipid Res. 2014;55:1324–30.<br />
59. Pfeifferm L, Wahl S, Pilling LC, Reischl E, Sandling JK, Kunze S, et al. DNA<br />
methylation of lipid-related genes affects blood lipid levels. Circ Cardiovasc<br />
Genet. 2015.<br />
60. Petersen A-K, Zeilinger S, Kastenmüller G, Römisch-Margl W, Brugger M, Peters<br />
A, et al. Epigenetics meets metabolomics: an epigenome-wide association<br />
study with blood serum metabolic traits. Hum Mol Genet. 2014;23:534–45.<br />
61. Hidalgo B, Irvin MR, Sha J, Zhi D, Aslibekyan S, Absher D, et al. Epigenomewide<br />
association study of fasting measures of glucose, insulin, and HOMA-IR<br />
in the genetics of lipid lowering drugs and diet network study. Diabetes.<br />
2014;63:801–7.<br />
62. Dayeh T, Volkov P, Salö S, Hall E, Nilsson E, Olsson AH, et al. Genome-wide<br />
DNA methylation analysis of human pancreatic islets from type 2 diabetic<br />
and non-diabetic donors identifies candidate genes that influence insulin<br />
secretion. PLoS Genet. 2014;10, e1004160.<br />
63. Nilsson E, Jansson PA, Perfilyev A, Volkov P, Pedersen M, Svensson MK, et al.<br />
Altered DNA methylation and differential expression of genes influencing<br />
metabolism and inflammation in adipose tissue from subjects with type 2<br />
diabetes. Diabetes. 2014;63:2962–76.<br />
64. Benton MC, Johnstone A, Eccles D, Harmon B, Hayes MT, Lea RA, et al. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight<br />
loss. Gene. 2015;16:1–21.<br />
65. Bateson P, Gluckman P. Plasticity and robustness in development and<br />
evolution. Int J Epidemiol. 2012;41:219–23.<br />
66. Feinberg AP, Irizarry RA, Feinberg AP, Irizarry RA. Evolution in health and<br />
medicine Sackler colloquium: stochastic epigenetic variation as a driving<br />
force of development, evolutionary adaptation, and disease. Proc Natl Acad<br />
Sci U S A. 2010;107(Suppl):1757–64.<br />
67. Martino D, Loke YJ, Gordon L, Ollikainen M, Cruickshank MN, Saffery R, et al.<br />
Longitudinal, genome-scale analysis of DNA methylation in twins from birth<br />
to 18 months of age reveals rapid epigenetic change in early life and pairspecific<br />
effects of discordance. Genome Biol. 2013;14:R42.<br />
68. Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y, et al. DNA<br />
methylation signatures link prenatal famine exposure to growth and<br />
metabolism. Nat Commun. 2014;5:5592.<br />
69. Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA, et al.<br />
Maternal nutrition at conception modulates DNA methylation of human<br />
metastable epialleles. Nat Commun. 2014;5:3746.<br />
70. Quilter CR, Cooper WN, Cliffe KM, Skinner BM, Prentice PM, Nelson L, et al.<br />
Impact on offspring methylation patterns of maternal gestational diabetes<br />
mellitus and intrauterine growth restraint suggest common genes and<br />
pathways linked to subsequent type 2 diabetes risk. FASEB J. 2014:1–12.<br />
71. Morales E, Groom A, Lawlor DA, Relton CL. DNA methylation signatures in<br />
cord blood associated with maternal gestational weight gain: results from<br />
the ALSPAC cohort. BMC Res Notes. 2014;7:278.<br />
72. Ruchat SM, Houde AA, Voisin G, St-Pierre J, Perron P, Baillargeon JP, et al.<br />
Gestational diabetes mellitus epigenetically affects genes predominantly<br />
involved in metabolic diseases. Epigenetics. 2013;8:935–43.<br />
73. Liu X, Chen Q, Tsai H-J, Wang G, Hong X, Zhou Y, et al. Maternal<br />
preconception body mass index and offspring cord blood DNA<br />
methylation: exploration of early life origins of disease. Environ Mol<br />
Mutagen. 2014;55:223–30.<br />
74. Soubry A, Murphy SK, Wang F, Huang Z, Vidal AC, Fuemmeler BF, et al.<br />
Newborns of obese parents have altered DNA methylation patterns at<br />
imprinted genes. Int J Obes (Lond). 2015;39:650–7.<br />
75. Jacobsen SC, Brøns C, Bork-Jensen J, Ribel-Madsen R, Yang B, Lara E, et al.<br />
Effects of short-term high-fat overfeeding on genome-wide DNA<br />
methylation in the skeletal muscle of healthy young men. Diabetologia.<br />
2012;55:3341–9.<br />
76. Gillberg L, Jacobsen SC, Rönn T, Brøns C, Vaag A. PPARGC1A DNA<br />
methylation in subcutaneous adipose tissue in low birth weight subjects–<br />
impact of 5 days of high-fat overfeeding. Metabolism. 2014;63:263–71.<br />
77. Huang Y-T, Maccani JZJ, Hawley NL, Wing RR, Kelsey KT, McCaffery JM.<br />
Epigenetic patterns in successful weight loss maintainers: a pilot study. Int J<br />
Obes (Lond). 2015;39:865–8.<br />
78. Barres R, Kirchner H, Rasmussen M, Yan J, Kantor FR, Krook A, Näslund E,<br />
Zierath JR. Weight loss after gastric bypass surgery in human obesity<br />
remodels promoter methylation. Cell Rep. 2013:1–8.<br />
79. Ahrens M, Ammerpohl O, von Schönfels W, Kolarova J, Bens S, Itzel T, et al.<br />
DNA methylation analysis in nonalcoholic fatty liver disease suggests<br />
distinct disease-specific and remodeling signatures after bariatric surgery.<br />
Cell Metab. 2013;18:296–302.<br />
80. Voisin S, Eynon N, Yan X, Bishop DJ. Exercise training and DNA methylation<br />
in humans. Acta Physiol (Oxf). 2014;213:39–59.<br />
81. Lindholm ME, Marabita F, Gomez-Cabrero D, Rundqvist H, Ekström TJ,<br />
Tegnér J, et al. An integrative analysis reveals coordinated reprogramming<br />
of the epigenome and the transcriptome in human skeletal muscle after<br />
training. Epigenetics. 2014;9:1557–69.<br />
82. Denham J, O’Brien BJ, Marques FZ, Charchar FJ. Changes in the leukocyte<br />
methylome and its effect on cardiovascular related genes after exercise.<br />
J Appl Physiol. 2014:jap.00878.2014.<br />
83. Rowlands DS, Page RA, Sukala WR, Giri M, Ghimbovschi SD, Hayat I, et al.<br />
Multi-omic integrated networks connect DNA methylation and miRNA with<br />
skeletal muscle plasticity to chronic exercise in type 2 diabetic obesity.<br />
Physiol Genomics. 2014;46:747–65.<br />
84. Horvath S, Erhart W, Brosch M, Ammerpohl O, von Schonfels W, Ahrens M,<br />
et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad<br />
Sci. 2014;111:15538–43.<br />
85. Almén MS, Nilsson EK, Jacobsson JA, Kalnina I, Klovins J, Fredriksson R, et al.<br />
Genome-wide analysis reveals DNA methylation markers that vary with<br />
both age and obesity. Gene. 2014.;548:61–7<br />
86. Houseman EA, Molitor J, Marsit CJ. Reference-free cell mixture adjustments<br />
in analysis of DNA methylation data. Bioinformatics. 2014;30:1431–9.<br />
87. Wells JC. A critical appraisal of the predictive adaptive response hypothesis.<br />
Int J Epidemiol. 2012;41:229–35.<br />
88. Williams-Wyss O, Zhang S, MacLaughlin SM, Kleemann D, Walker SK, Suter<br />
CM, et al. Embryo number and periconceptional undernutrition in the<br />
sheep have differential effects on adrenal epigenotype, growth, and<br />
development. Am J Physiol Endocrinol Metab. 2014;307:E141–50.<br />
89. Zhang S, Rattanatray L, Morrison JL, Nicholas LM, Lie S, McMillen IC.<br />
Maternal obesity and the early origins of childhood obesity: weighing up<br />
the benefits and costs of maternal weight loss in the periconceptional<br />
period for the offspring. Exp Diabetes Res. 2011;2011:585749.<br />
90. Zhang S, Williams-Wyss O, MacLaughlin SM, Walker SK, Kleemann DO, Suter<br />
CM, et al. Maternal undernutrition during the first week after conception<br />
results in decreased expression of glucocorticoid receptor mRNA in the<br />
absence of GR exon 17 hypermethylation in the fetal pituitary in late<br />
gestation. J Dev Orig Heal Dis. 2013;4:391–401.<br />
91. Lie S, Morrison JL, Williams-Wyss O, Suter CM, Humphreys DT, Ozanne SE,<br />
et al. Periconceptional undernutrition programs changes in insulin-signaling<br />
molecules and microRNAs in skeletal muscle in singleton and twin fetal<br />
sheep. Biol Reprod. 2014;90:5.<br />
92. Van Straten EM, van Meer H, Huijkman NC, van Dijk TH, Baller JF, Verkade<br />
HJ, et al. Fetal liver X receptor activation acutely induces lipogenesis but<br />
does not affect plasma lipid response to a high-fat diet in adult mice. Am J<br />
Physiol Endocrinol Metab. 2009;297:E1171–8.<br />
93. Fernandez-Twinn DS, Alfaradhi MZ, Martin-Gronert MS, Duque-Guimaraes<br />
DE, Piekarz A, Ferland-McCollough D, et al. Downregulation of IRS-1 in<br />
adipose tissue of offspring of obese mice is programmed cellautonomously<br />
through post-transcriptional mechanisms. Mol Metab.<br />
2014;3:325–33.<br />
94. Waterland RA, Travisano M, Tahiliani KG. Diet-induced hypermethylation at<br />
agouti viable yellow is not inherited transgenerationally through the female.<br />
FASEB J. 2007;21:3380–5.<br />
95. Ge ZJ, Luo SM, Lin F, Liang QX, Huang L, Wei YC, et al. DNA methylation in<br />
oocytes and liver of female mice and their offspring: effects of high-fat-dietinduced<br />
obesity. Env Heal Perspect. 2014;122:159–64.<br />
96. Ollikainen M, Ismail K, Gervin K, Kyllönen A, Hakkarainen A, Lundbom J, et al.<br />
Genome-wide blood DNA methylation alterations at regulatory elements<br />
and heterochromatic regions in monozygotic twins discordant for obesity<br />
and liver fat. Clin Epigenetics. 2015;7:1–13.

 

Dr. Alex Jimenez's insight:

Advances in epigenetic methodologies and the reduced cost of epigenome-wide association studies have led to a rapid expansion of studies.  For Answers to any questions you may have please call Dr. Jimenez at 915-850-0900

william's curator insight, September 14, 2022 2:06 PM

Acquista Online La Prescrizione Di Perdita Di Peso
Crediamo che i farmaci a volte possano essere molto urgenti da assumere. Se hai urgente bisogno di farmaci, possiamo anche fornirti una consegna espressa,

https://farmaciadimagrante.com/
https://farmaciadimagrante.com/Prodotto/acquista-ossicodone-online/
https://farmaciadimagrante.com/Prodotto/acquista-oxycontin-online/
https://farmaciadimagrante.com/Prodotto/acquista-percocet-online/
https://farmaciadimagrante.com/Prodotto/acquista-phentermine-online/
https://farmaciadimagrante.com/Prodotto/acquista-eroina-bianca/
https://farmaciadimagrante.com/Prodotto/a-215-ossicodone-actavis/
https://farmaciadimagrante.com/Prodotto/acquista-adderall-30mg/
https://farmaciadimagrante.com/Prodotto/acquista-adipex-online/
https://farmaciadimagrante.com/Prodotto/acquista-adma-online/
https://farmaciadimagrante.com/Prodotto/acquista-ambien/
https://farmaciadimagrante.com/Prodotto/acquista-ativan-online/
https://farmaciadimagrante.com/Prodotto/acquista-botox-online/
https://farmaciadimagrante.com/Prodotto/acquista-cerotti-al-fentanil/
https://farmaciadimagrante.com/Prodotto/acquista-codeina-linctus-online/
https://farmaciadimagrante.com/Prodotto/acquista-codeina-online/
https://farmaciadimagrante.com/Prodotto/acquista-demerol-online/
https://farmaciadimagrante.com/Prodotto/acquista-depalgo-online/
https://farmaciadimagrante.com/Prodotto/acquista-diazepam-online/
https://farmaciadimagrante.com/Prodotto/acquista-dilaudid-8mg/
https://farmaciadimagrante.com/Prodotto/acquista-endocet-online/
https://farmaciadimagrante.com/Prodotto/acquista-green-xanax/
https://farmaciadimagrante.com/Prodotto/acquista-hydrocodone-online/
https://farmaciadimagrante.com/Prodotto/acquista-instanyl-online/
https://farmaciadimagrante.com/Prodotto/acquista-l-ritalin-online/
https://farmaciadimagrante.com/Prodotto/acquista-metadone/
https://farmaciadimagrante.com/Prodotto/acquista-morfina-solfato/
https://farmaciadimagrante.com/Prodotto/acquista-opana-online/
https://farmaciadimagrante.com/Prodotto/acquista-roxicodone-30mg/
https://farmaciadimagrante.com/Prodotto/acquista-stilnox-online/
https://farmaciadimagrante.com/Prodotto/acquista-suboxone-8mg/
https://farmaciadimagrante.com/Prodotto/acquista-subutex-online/
https://farmaciadimagrante.com/Prodotto/acquista-vicodin-online/
https://farmaciadimagrante.com/Prodotto/acquista-vyvanse-online/
https://farmaciadimagrante.com/Prodotto/acquista-xanax-2mg/
https://farmaciadimagrante.com/Prodotto/acquistare-dapoxetina-online/
https://farmaciadimagrante.com/Prodotto/acquistare-rohypnol-2mg/
https://farmaciadimagrante.com/Prodotto/acquistare-sibutramina-online/
https://farmaciadimagrante.com/Prodotto/efedrina-hcl-in-polvere/
https://farmaciadimagrante.com/Prodotto/ephedrine-hcl-30mg/
https://farmaciadimagrante.com/Prodotto/sciroppo-di-metadone/
https://farmaciadimagrante.com/Prodotto/tramadolo-hcl-200mg/
https://farmaciadimagrante.com/Prodotto/acquista-cristallo-mdma-online/

 

https://farmaciadimagrante.com/blog/
https://farmaciadimagrante.com/2022/08/15/acquista-adderall-30mg-online/
https://farmaciadimagrante.com/2022/08/15/acquistare-sibutramina-online-2omg/
https://farmaciadimagrante.com/2022/08/15/acquista-efedrina-hcl-30mg/
https://farmaciadimagrante.com/2022/08/15/acquista-adipex-online-75mg/
https://farmaciadimagrante.com/2022/08/15/acquista-phentermine-online-senza-prescrizione-medica/
https://farmaciadimagrante.com/2022/08/15/acquistare-vyvanse-online-70mg/

 

Quando si tratta di questioni di salute, è fondamentale sapere quali sono le farmacie buone e cattive.
Devi imparare cosa cercare in una farmacia per sapere se è quella giusta. Ricorda, hai a che fare con la vita, ecco perché devi stare attento a dove acquistare i tuoi farmaci e altre necessità farmaceutiche.

https://profarmaceutico.com/
https://profarmaceutico.com/Prodotto/a-215-ossicodone-actavis/
https://profarmaceutico.com/Prodotto/acquista-adderall-30mg/
https://profarmaceutico.com/Prodotto/acquista-adipex-online/
https://profarmaceutico.com/Prodotto/acquista-ossicodone-online/
https://profarmaceutico.com/Prodotto/acquista-oxycontin-online/
https://profarmaceutico.com/Prodotto/acquista-codeina-online/
https://profarmaceutico.com/Prodotto/acquista-adma-online/
https://profarmaceutico.com/Prodotto/acquista-ambien/
https://profarmaceutico.com/Prodotto/acquista-ativan-online/
https://profarmaceutico.com/Prodotto/acquista-botox-online/
https://profarmaceutico.com/Prodotto/acquista-cerotti-al-fentanil/
https://profarmaceutico.com/Prodotto/acquista-codeina-linctus-online/
https://profarmaceutico.com/Prodotto/acquista-demerol-online/
https://profarmaceutico.com/Prodotto/acquista-depalgo-online/
https://profarmaceutico.com/Prodotto/acquista-diazepam-online/
https://profarmaceutico.com/Prodotto/acquistare-idromorfone-online/
https://profarmaceutico.com/Prodotto/acquista-endocet-online/
https://profarmaceutico.com/Prodotto/acquista-eroina-bianca/
https://profarmaceutico.com/Prodotto/acquista-green-xanax/
https://profarmaceutico.com/Prodotto/acquista-hydrocodone-online/
https://profarmaceutico.com/Prodotto/acquista-instanyl-online/
https://profarmaceutico.com/Prodotto/acquista-l-ritalin-online/
https://profarmaceutico.com/Prodotto/acquista-metadone/
https://profarmaceutico.com/Prodotto/acquista-morfina-solfato/
https://profarmaceutico.com/Prodotto/acquista-opana-online/
https://profarmaceutico.com/Prodotto/acquista-percocet-online/
https://profarmaceutico.com/Prodotto/acquista-phentermine-online/
https://profarmaceutico.com/Prodotto/acquista-roxy-roxicodone-30-mg/
https://profarmaceutico.com/Prodotto/acquista-stilnox-online/
https://profarmaceutico.com/Prodotto/acquista-suboxone-8mg/
https://profarmaceutico.com/Prodotto/acquista-subutex-online/
https://profarmaceutico.com/Prodotto/acquista-vicodin-online/
https://profarmaceutico.com/Prodotto/acquista-vyvanse-online/
https://profarmaceutico.com/Prodotto/acquista-xanax-2mg/
https://profarmaceutico.com/Prodotto/acquistare-dapoxetina-online/
https://profarmaceutico.com/Prodotto/acquistare-rohypnol-2mg/
https://profarmaceutico.com/Prodotto/acquistare-sibutramina-online/
https://profarmaceutico.com/Prodotto/efedrina-hcl-in-polvere/
https://profarmaceutico.com/Prodotto/ephedrine-hcl-30mg/
https://profarmaceutico.com/Prodotto/sciroppo-di-metadone/
https://profarmaceutico.com/Prodotto/tramadolo-hcl-200mg/

 

<a href="https://farmaciadimagrante.com/Prodotto/acquista-ativan-online/">acquista-ativan-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-botox-online/">acquista-botox-online</a></a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-cerotti-al-fentanil/">acquista-cerotti-al-fentanil</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-codeina-linctus-online/">acquista-codeina-linctus-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-codeina-online/">acquista-codeina-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-demerol-online/">acquista-demerol-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-depalgo-online/">acquista-depalgo-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-diazepam-online/">acquista-diazepam-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquistare-idromorfone-online/">acquistare-idromorfone-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-endocet-online/">acquista-endocet-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-green-xanax/">acquista-green-xanax</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-hydrocodone-online/">acquista-hydrocodone-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-instanyl-online/">acquista-instanyl-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-l-ritalin-online/">acquista-l-ritalin-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-metadone/">acquista-metadone</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-morfina-solfato/">acquista-morfina-solfato</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-opana-online/">acquista-opana-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-roxicodone-30mg/">acquista-roxicodone-30mg</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-stilnox-online/">acquista-stilnox-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-suboxone-8mg/">acquista-suboxone-8mg</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-subutex-online/">acquista-subutex-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-vicodin-online/">acquista-vicodin-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-vyvanse-online/">acquista-vyvanse-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquista-xanax-2mg/">acquista-xanax-2mg</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquistare-dapoxetina-online/">acquistare-dapoxetina-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquistare-rohypnol-2mg/">acquistare-rohypnol-2mg</a>;
<a href="https://farmaciadimagrante.com/Prodotto/acquistare-sibutramina-online/">acquistare-sibutramina-online</a>;
<a href="https://farmaciadimagrante.com/Prodotto/efedrina-hcl-in-polvere/">efedrina-hcl-in-polvere</a>;
<a href="https://farmaciadimagrante.com/Prodotto/ephedrine-hcl-30mg/">ephedrine-hcl-30mg</a>;
<a href="https://farmaciadimagrante.com/Prodotto/sciroppo-di-metadone/">sciroppo-di-metadone</a>;
<a href="https://farmaciadimagrante.com/Prodotto/tramadolo-hcl-200mg/">tramadolo-hcl-200mg</a>;

<a href="https://farmaciadimagrante.com/2022/08/15/acquista-adderall-30mg-online/">acquista-adderall-30mg-online</a>;
<a href="https://farmaciadimagrante.com/2022/08/15/acquistare-sibutramina-online-2omg/">acquistare-sibutramina-online-2omg</a>;
<a href="https://farmaciadimagrante.com/2022/08/15/acquista-efedrina-hcl-30mg/">acquista-efedrina-hcl-30mg</a>;
<a href="https://farmaciadimagrante.com/2022/08/15/acquista-adipex-online-75mg/">acquista-adipex-online-75mg</a>;
<a href="https://farmaciadimagrante.com/2022/08/15/acquista-phentermine-online-senza-prescrizione-medica/">acquista-phentermine-online-senza-prescrizione-medica</a>;
<a href="https://farmaciadimagrante.com/2022/08/15/acquistare-vyvanse-online-70mg/">acquistare-vyvanse-online-70mg</a>;

 

 

Quando si tratta di questioni di salute, è fondamentale sapere quali sono le farmacie buone e cattive. Devi imparare cosa cercare in una farmacia per sapere se è quella giusta. Ricorda, hai a che fare con la vita, ecco perché devi stare attento a dove acquistare i tuoi farmaci e altre necessità farmaceutiche.

<a href="https://profarmaceutico.com/Prodotto/a-215-ossicodone-actavis/">a-215-ossicodone-actavis</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-adderall-30mg/">acquista-adderall-30mg</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-adipex-online/">acquista-adipex-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-ossicodone-online/">acquista-ossicodone-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-oxycontin-online/">acquista-oxycontin-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-codeina-online/">acquista-codeina-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-adma-online/">acquista-adma-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-ambien/">acquista-ambien</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-ativan-online/">acquista-ativan-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-botox-online/">acquista-botox-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-cerotti-al-fentanil/">acquista-cerotti-al-fentanil</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-codeina-linctus-online/">acquista-codeina-linctus-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-demerol-online/">acquista-demerol-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-depalgo-online/">acquista-depalgo-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-diazepam-online/">acquista-diazepam-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-dilaudid-8mg/">acquista-dilaudid-8mg</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-endocet-online/">acquista-endocet-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-eroina-bianca/">acquista-eroina-bianca</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-green-xanax/">acquista-green-xanax</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-hydrocodone-online/">acquista-hydrocodone-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-instanyl-online/">acquista-instanyl-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-l-ritalin-online/">acquista-l-ritalin-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-metadone/">acquista-metadone</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-morfina-solfato/">acquista-morfina-solfato</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-opana-online/">acquista-opana-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-percocet-online/">acquista-percocet-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-phentermine-online/">acquista-phentermine-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-roxy-roxicodone-30-mg/">acquista-roxy-roxicodone-30-mg</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-stilnox-online/">acquista-stilnox-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-suboxone-8mg/">acquista-suboxone-8mg</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-subutex-online/">acquista-subutex-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-vicodin-online/">acquista-vicodin-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-vyvanse-online/">acquista-vyvanse-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquista-xanax-2mg/">acquista-xanax-2mg</a>;
<a href="https://profarmaceutico.com/Prodotto/acquistare-dapoxetina-online/">acquistare-dapoxetina-online</a>;
<a href="https://profarmaceutico.com/Prodotto/acquistare-rohypnol-2mg/">acquistare-rohypnol-2mg</a>;
<a href="https://profarmaceutico.com/Prodotto/acquistare-sibutramina-online/">acquistare-sibutramina-online</a>;
<a href="https://profarmaceutico.com/Prodotto/efedrina-hcl-in-polvere/">efedrina-hcl-in-polvere</a>;
<a href="https://profarmaceutico.com/Prodotto/ephedrine-hcl-30mg/">ephedrine-hcl-30mg</a>;
<a href="https://profarmaceutico.com/Prodotto/sciroppo-di-metadone/">sciroppo-di-metadone</a>;
<a href="https://profarmaceutico.com/Prodotto/tramadolo-hcl-200mg/">tramadolo-hcl-200mg</a>;

good health's curator insight, January 16, 7:43 AM
https://farmaciadimagrante.com/ https://farmaciadimagrante.com/Prodotto/acquista-cristallo-mdma-online/ https://farmaciadimagrante.com/Prodotto/acquista-ativan-online/ https://farmaciadimagrante.com/Prodotto/acquista-botox-online/ https://farmaciadimagrante.com/Prodotto/acquista-cerotti-al-fentanil/ https://farmaciadimagrante.com/Prodotto/acquista-codeina-linctus-online/ https://farmaciadimagrante.com/Prodotto/acquista-codeina-online/ https://farmaciadimagrante.com/Prodotto/acquista-demerol-online/ https://farmaciadimagrante.com/Prodotto/acquista-depalgo-online/ https://farmaciadimagrante.com/Prodotto/acquista-diazepam-online/ https://farmaciadimagrante.com/Prodotto/acquistare-idromorfone-online/ https://farmaciadimagrante.com/Prodotto/acquista-endocet-online/ https://farmaciadimagrante.com/Prodotto/acquista-green-xanax/ https://farmaciadimagrante.com/Prodotto/acquista-hydrocodone-online/ https://farmaciadimagrante.com/Prodotto/acquista-instanyl-online/ https://farmaciadimagrante.com/Prodotto/acquista-l-ritalin-online/ https://farmaciadimagrante.com/Prodotto/acquista-metadone/ https://farmaciadimagrante.com/Prodotto/acquista-morfina-solfato/ https://farmaciadimagrante.com/Prodotto/acquista-opana-online/ https://farmaciadimagrante.com/Prodotto/acquista-roxicodone-30mg/ https://farmaciadimagrante.com/Prodotto/acquista-stilnox-online/ https://farmaciadimagrante.com/Prodotto/acquista-suboxone-8mg/ https://farmaciadimagrante.com/Prodotto/acquista-subutex-online/ https://farmaciadimagrante.com/Prodotto/acquista-vicodin-online/ https://farmaciadimagrante.com/Prodotto/acquista-vyvanse-online/ https://farmaciadimagrante.com/Prodotto/acquista-xanax-2mg/ https://farmaciadimagrante.com/Prodotto/acquistare-dapoxetina-online/ https://farmaciadimagrante.com/Prodotto/acquistare-rohypnol-2mg/ https://farmaciadimagrante.com/Prodotto/acquistare-sibutramina-online/ https://farmaciadimagrante.com/Prodotto/efedrina-hcl-in-polvere/ https://farmaciadimagrante.com/Prodotto/ephedrine-hcl-30mg/ https://farmaciadimagrante.com/Prodotto/sciroppo-di-metadone/ https://farmaciadimagrante.com/Prodotto/tramadolo-hcl-200mg/ acquista-ativan-online acquista-botox-online acquista-cerotti-al-fentanil acquista-codeina-linctus-online acquista-codeina-online acquista-demerol-online acquista-depalgo-online acquista-diazepam-online acquistare-idromorfone-online acquista-endocet-online acquista-green-xanax acquista-hydrocodone-online acquista-instanyl-online acquista-l-ritalin-online acquista-metadone acquista-morfina-solfato acquista-opana-online acquista-roxicodone-30mg acquista-stilnox-online acquista-suboxone-8mg acquista-subutex-online acquista-vicodin-online acquista-vyvanse-online acquista-xanax-2mg acquistare-dapoxetina-online acquistare-rohypnol-2mg acquistare-sibutramina-online efedrina-hcl-in-polvere ephedrine-hcl-30mg sciroppo-di-metadone tramadolo-hcl-200mg acquista-adderall-30mg-online acquistare-sibutramina-online-2omg acquista-efedrina-hcl-30mg acquista-adipex-online-75mg acquista-phentermine-online-senza-prescrizione-medica acquistare-vyvanse-online-70mg https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-ativan-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-botox-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-cerotti-al-fentanil/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-codeina-linctus-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-codeina-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-demerol-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-depalgo-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-diazepam-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquistare-idromorfone-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-endocet-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-green-xanax/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-hydrocodone-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-instanyl-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-l-ritalin-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-metadone/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-morfina-solfato/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-opana-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-roxicodone-30mg/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-stilnox-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-suboxone-8mg/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-subutex-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-vicodin-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-vyvanse-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquista-xanax-2mg/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquistare-dapoxetina-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquistare-rohypnol-2mg/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/acquistare-sibutramina-online/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/efedrina-hcl-in-polvere/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/ephedrine-hcl-30mg/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/sciroppo-di-metadone/ https://www.google.it/url?q=https://farmaciadimagrante.com/Prodotto/tramadolo-hcl-200mg/ acquista-ativan-online acquista-botox-online acquista-cerotti-al-fentanil acquista-codeina-linctus-online acquista-codeina-online acquista-demerol-online acquista-depalgo-online acquista-diazepam-online acquistare-idromorfone-online acquista-endocet-online acquista-green-xanax acquista-hydrocodone-online acquista-instanyl-online acquista-l-ritalin-online acquista-metadone acquista-morfina-solfato acquista-opana-online acquista-roxicodone-30mg acquista-stilnox-online acquista-suboxone-8mg acquista-subutex-online acquista-vicodin-online acquista-vyvanse-online acquista-xanax-2mg acquistare-dapoxetina-online acquistare-rohypnol-2mg acquistare-sibutramina-online efedrina-hcl-in-polvere ephedrine-hcl-30mg sciroppo-di-metadone tramadolo-hcl-200mg
Scooped by Dr. Alex Jimenez
Scoop.it!

Body Composition Evaluation: A Clinical Practice Tool

Body Composition Evaluation: A Clinical Practice Tool | Diet and Supplements | Scoop.it

Body Composition: Key Words

  • Fat-free mass
  • Fat mass
  • Undernutrition
  • Bioelectrical impedance analysis
  • Sarcopenic obesity
  • Drug toxicity

 

Abstract

 

Undernutrition is insufficiently detected in in- and outpatients, and this is likely to worsen during the next decades. The increased prevalence of obesity together with chronic illnesses associated with fat-free mass (FFM) loss will result in an increased prevalence of sarcopenic obesity. In patients with sarcopenic obesity, weight loss and the body mass index lack accuracy to detect FFM loss. FFM loss is related to increasing mortality, worse clinical outcomes, and impaired quality of life. In sarcopenic obesity and chronic diseases, body composition measurement with dual-energy X-ray absorptiometry, bioelectrical impedance analysis, or computerized tomography quantifies the loss of FFM. It allows tailored nutritional support and disease-specific therapy and reduces the risk of drug toxicity. Body composition evaluation should be integrated into routine clinical practice for the initial assessment and sequential follow-up of nutritional status. It could allow objective, systematic, and early screening of undernutrition and promote the rational and early initiation of optimal nutritional support, thereby contributing to reducing malnutrition-induced morbidity, mortality, worsening of the quality of life, and global health care costs.

Introduction

Chronic undernutrition is characterized by a progressive reduction of the fat-free mass (FFM) and fat mass (FM) and  which has deleterious consequences on health. Undernutrition is insufficiently screened and treated in hospitalized or at-risk patients despite its high prevalence and negative impact on mortality, morbidity, length of stay (LOS), quality of life, and costs [1–4]. The risk of underestimating hospital undernutrition is likely to worsen in the next decades because of the increasing prevalence of overweight, obesity, and chronic diseases and the increased number of elderly subjects. These clinical conditions are associated with FFM loss (sarcopenia). Therefore, an increased number of patients with FFM loss and sarcopenic obesity will be seen in the future.

 

Sarcopenic obesity is associated with decreased survival and increased therapy toxicity in cancer patients [5–10], whereas FFM loss is related to decreased survival, a negative clinical outcome, increased health care costs [2], and impaired overall health, functional capacities, and quality of life [4–11]. Therefore, the detection and treatment of FFM loss is a major issue of public health and health costs [12].

 

Weight loss and the body mass index (BMI) lack sensitivity to detect FFM loss [13]. In this review, we support the systematic assessment of FFM with a method of body composition evaluation in order to improve the detection, management, and follow-up of undernutrition. Such an approach should in turn reduce the clinical and functional consequences of diseases in the setting of a cost- effective medico-economic approach (fig. 1). We discuss the main applications of body composition evaluation in clinical practice (fig. 2).

 

Fig. 1. Conceptualization of the expected impact of early use of body composition for the screening of fat-free loss and under-nutrition in sarcopenic overweight and obese subjects. An increased prevalence of overweight and obesity is observed in all Western and emerging countries. Simultaneously, the aging of the population, the reduction of the level of physical activity, and the higher prevalence of chronic dis- eases and cancer increased the number of patients with or at risk of FFM impairment, i.e. sarcopenia. Thus, more patients are presenting with ‘sarcopenic over- weight or obesity’. In these patients, evaluation of nutritional status using anthropometric methods, i.e. weight loss and calculation of BMI, is not sensitive enough to detect FFM impairment. As a result, undernutrition is not detected, worsens, and negatively impacts morbidity, mortality, LOS, length of recovery, quality of life, and health care costs. On the contrary, in patients with ‘sarcopenic overweight or obesity’, early screening of undernutrition with a dedicated method of body composition evaluation would allow early initiation of nutritional support and, in turn, improvements of nutritional status and clinical outcome.

 

Rationale for a New Strategy for the Screening of Undernutrition

 

Screening of Undernutrition Is Insufficient

 

Academic societies encourage systematic screening of undernutrition at hospital admission and during the hospital stay [14]. The detection of undernutrition is generally based on measurements of weight and height, calculations of BMI, and the percentage of weight loss. Nevertheless, screening of undernutrition is infrequent in hospitalized or nutritionally at-risk ambulatory patients. For example, in France, surveys performed by the French Health Authority [15] indicate that: (i) weight alone, (ii) weight with BMI or percentage of weight loss, and (iii) weight, BMI, and percentage of weight loss are reported in only 55, 30, and 8% of the hospitalized patients’ records, respectively. Several issues, which could be improved by specific educational programs, explain the lack of implementation of nutritional screening in hospitals (table 1). In addition, the accuracy of the clinical screening of undernutrition could be limited at hospital admission. Indeed, patients with undernutrition may have the same BMI as sex- and age- matched healthy controls but a significantly decreased FFM hidden by an expansion of the FM and the total body water which can be measured by bioelectrical impedance analysis (BIA) [13]. This example illustrates that body composition evaluation allows a more accurate identification of FFM loss than body weight loss or BMI decrease. The lack of sensitivity and specificity of weight, BMI, and percentage of weight loss argue for the need for other methods to evaluate the nutritional status.

Changes in Patients’ Profiles

In 2008, twelve and thirty percent of the worldwide adult population was obese or overweight; this is two times higher than in 1980 [16]. The prevalence of overweight and obesity is also increasing in hospitalized patients. A 10-year comparative survey performed in a European hospital showed an increase in patients’ BMI, together with a shorter LOS [17]. The BMI increase masks undernutrition and FFM loss at hospital admission. The increased prevalence of obesity in an aging population has led to the recognition of a new nutritional entity: ‘sarcopenic obesity’ [18]. Sarcopenic obesity is characterized by increased FM and reduced FFM with a normal or high body weight. The emergence of the concept of sarcopenic obesity will increase the number of situations associated with a lack of sensitivity of the calculations of BMI and body weight change for the early detection of FFM loss. This supports a larger use of body composition evaluation for the assessment and follow-up of nutritional status in clinical practice (fig. 1).

 

Fig. 2. Current and potential applications of body composition evaluation in clinical practice. The applications are indicated in the boxes, and the body composition methods that could be used for each application are indicated inside the circles. The most used application of body composition evaluation is the measurement of bone mineral density by DEXA for the diagnosis and management of osteoporosis. Although a low FFM is associated with worse clinical outcomes, FFM evaluation is not yet implemented enough in clinical practice. However, by allowing early detection of undernutrition, body composition evaluation could improve the clinical outcome. Body composition evaluation could also be used to follow up nutritional status, calculate energy needs, tailor nutritional support, and assess fluid changes during perioperative period and renal insufficiency. Recent evidence indicates that a low FFM is associated with a higher toxicity of some chemo- therapy drugs in cancer patients. Thus, by allowing tailoring of the chemotherapy doses to the FFM in cancer patients, body com- position evaluation should improve the tolerance and the efficacy of chemotherapy. BIA, L3-targeted CT, and DEXA could be used for the assessment of nutritional status, the calculation of energy needs, and the tailoring of nutritional support and therapy. Further studies are warranted to validate BIA as an accurate method for fluid balance measurement. By integrating body composition evaluation into the management of different clinical conditions, all of these potential applications would lead to a better recognition of nutritional care by the medical community, the health care facilities, and the health authorities, as well as to an increase in the medico-economic benefits of the nutritional evaluation.

Body Composition Evaluation For The Assessment Of Nutritional Status

Body composition evaluation is a valuable technique to assess nutritional status. Firstly, it gives an evaluation of nutritional status through the assessment of FFM. Secondly, by measuring FFM and phase angle with BIA, it allows evaluation of the disease prognosis and outcome.

Body Composition Techniques For FFM Measurement

Body composition evaluation allows measurement of the major body compartments: FFM (including bone mineral tissue), FM, and total body water. Table 2 shows indicative values of the body composition of a healthy subject weighing 70 kg. In several clinical situations, i.e. hospital admission, chronic obstructive pulmonary dis- ease (COPD) [21–23], dialysis [24–26], chronic heart failure [27], amyotrophic lateral sclerosis [28], cancer [5, 29], liver transplantation [30], nursing home residence [31], and Alzheimer’s disease [32], changes in body compartments are detected with the techniques of body composition evaluation. At hospital admission, body composition evaluation could be used for the detection of FFM loss and undernutrition. Indeed, FFM and the FFM index (FFMI) [FFM (kg)/height (m2)] measured by BIA are significantly lower in hospitalized patients (n = 995) than in age-, height-, and sex-matched controls (n = 995) [3]. Conversely, clinical tools of nutritional status assessment, such as BMI, subjective global assessment, or mini-nutritional assessment, are not accurate enough to estimate FFM loss and nutritional status [30, 32–34]. In 441 patients with non-small cell lung cancer, FFM loss deter- mined by computerized tomography (CT) was observed in each BMI category [7], and in young adults with all types of cancer, an increase in FM together with a de- crease in FFM were reported [29]. These findings reveal the lack of sensitivity of BMI to detect FFM loss. More- over, the FFMI is a more sensitive determinant of LOS than a weight loss over 10% or a BMI below 20 [3]. In COPD, the assessment of FFM by BIA is a more sensitive method to detect undernutrition than anthropometry [33, 35]. BIA is also more accurate at assessing nutrition- al status in children with severe neurologic impairment than the measurement of skin fold thickness [36].

Body Composition For The Evaluation Of Prognosis & Clinical Outcome

FFM loss is correlated with survival in different clinical settings [5, 21–28, 37]. In patients with amyotrophic lateral sclerosis, an FM increase, but not an FFM in- crease, measured by BIA, was correlated with survival during the course of the disease [28]. The relation between body composition and mortality has not yet been demonstrated in the intensive care unit. The relation between body composition and mortality has been demonstrated with anthropometric methods, BIA, and CT. Measurement of the mid-arm muscle circumference is an easy tool to diagnose sarcopenia [38]. The mid-arm muscle circumference has been shown to be correlated with survival in patients with cirrhosis [39, 40], HIV infection [41], and COPD in a stronger way than BMI [42]. The relation between FFM loss and mortality has been extensively shown with BIA [21–28, 31, 37], which is the most used method. Recently, very interesting data suggest that CT could evaluate the disease prognosis in relation to muscle wasting. In obese cancer patients, sarcopenia as assessed by CT measurement of the total skeletal muscle cross-sectional area is an independent predictor of the survival of patients with bronchopulmonary [5, 7], gastrointestinal [5], and pancreatic cancers [6]. FFM assessed by measurement of the mid-thigh muscle cross- sectional area by CT is also predictive of mortality in COPD patients with severe chronic respiratory insufficiency [43]. In addition to mortality, a low FFMI at hospital admission is significantly associated with an in- creased LOS [3, 44]. A bicentric controlled population study performed in 1,717 hospitalized patients indicates that both loss of FFM and excess of FM negatively affect the LOS [44]. Patients with sarcopenic obesity are most at risk of increased LOS. This study also found that ex- cess FM reduces the sensitivity of BMI to detect nutritional depletion [44]. Together with the observation that the BMI of hospitalized patients has increased during the last decade [17], these findings suggest that FFM and FFMI measurement should be used to evaluate nutritional status in hospitalized patients.

 

BIA measures the phase angle [45]. A low phase angle is related to survival in oncology [46–50], HIV infection/ AIDS [51], amyotrophic lateral sclerosis [52], geriatrics [53], peritoneal dialysis [54], and cirrhosis [55]. The phase angle threshold associated with reduced survival is variable: less than 2.5 degrees in amyotrophic lateral sclerosis patients [52], 3.5 degrees in geriatric patients [53], from less than 1.65 to 5.6 degrees in oncology patients [47–50], and 5.4 degrees in cirrhotic patients [55]. The phase angle is also associated with the severity of lymphopenia in AIDS [56], and with the risk of postoperative complications among gastrointestinal surgical patients [57]. The relation of phase angle with prognosis and disease severity reinforces the interest in using BIA for the clinical management of patients with chronic diseases at high risk of undernutrition and FFM loss.

 

In summary, FFM loss or a low phase angle is related to mortality in patients with chronic diseases, cancer (in- cluding obesity cancer patients), and elderly patients in long-stay facilities. A low FFM and an increased FM are associated with an increased LOS in adult hospitalized patients. The relation between FFM loss and clinical out- come is clearly shown in patients with sarcopenic obesity. In these patients, as the sensitivity of BMI for detecting FFM loss is strongly reduced, body composition evalua- tion appears to be the method of choice to detect under- nutrition in routine practice. Overall, the association between body composition, phase angle, and clinical outcome reinforces the pertinence of using a body com- position evaluation in clinical practice.

Which Technique Of Body Composition Evaluation Should Be Used For The Assessment Of Nutritional Status?

Numerous methods of body composition evaluation have been developed: anthropometry, including the 4-skinfold method [58], hydrodensitometry [58], in vivo neutron activation analysis [59], anthropogammametry from total body potassium-40 [60], nuclear magnetic resonance [61], dual-energy X-ray absorptiometry (DEXA) [62, 63], BIA [45, 64–66], and more recently CT [7, 43, 67]. DEXA, BIA, and CT appear to be the most convenient methods for clinical practice (fig. 2), while the other methods are reserved for scientific use.

 

Compared with other techniques of body composition evaluation, the lack of reproducibility and sensitivity of the 4-skinfold method limits its use for the accurate measurement of body composition in clinical practice [33, 34]. However, in patients with cirrhosis [39, 40], COPD [34], and HIV infection [41], measurement of the mid- arm muscle circumference could be used to assess sarcopenia and disease-related prognosis. DEXA allows non- invasive direct measurement of the three major components of body composition. The measurement of bone mineral tissue by DEXA is used in clinical practice for the diagnosis and follow-up of osteoporosis. As the clinical conditions complicated by osteoporosis are often associated with undernutrition, i.e. elderly women, patients with organ insufficiencies, COPD [68], inflammatory bowel diseases, and celiac disease, DEXA could be of the utmost interest for the follow-up of both osteoporosis and nutritional status. However, the combined evaluation of bone mineral density and nutritional status is difficult to implement in clinical practice because the reduced accessibility of DEXA makes it impossible to be performed in all nutritionally at-risk or malnourished patients. The principles and clinical utilization of BIA have been largely described in two ESPEN position papers [45, 66]. BIA is based on the capacity of hydrated tissues to conduct electrical energy. The measurement of total body impedance allows estimation of total body water by assuming that total body water is constant. From total body water, validated equations allow the calculation of FFM and FM [69], which are interpreted according to reference values [70]. BIA is the only technique which allows calculation of the phase angle, which is correlated with the prognosis of various diseases. BIA equations are valid for: COPD [65]; AIDS wasting [71]; heart, lung, and liver transplantation [72]; anorexia nervosa [73] patients, and elderly subjects [74]. However, no BIA-specific equations have been validated in patients with extreme BMI (less than 17 and higher than 33.8) and dehydration or fluid overload [45, 66]. Nevertheless, because of its simplicity, low cost, quickness of use at bedside, and high interoperator reproducibility, BIA appears to be the technique of choice for the systematic and repeated evaluation of FFM in clinical practice, particularly at hospital admission and in chronic diseases. Finally, through written and objective re- ports, the wider use of BIA should allow improvement of the traceability of nutritional evaluation and an increase in the recognition of nutritional care by the health authorities. Recently, several data have suggested that CT images targeted on the 3rd lumbar vertebra (L3) could strongly predict whole-body fat and FFM in cancer patients, as compared with DEXA [7, 67]. Interestingly, the evaluation of body composition by CT presents great practical significance due to its routine use in patient diagnosis, staging, and follow-up. L3-targeted CT images evaluate FFM by measuring the muscle cross-sectional area from L3 to the iliac crest by use of Hounsfield unit (HU) thresholds (–29 to +150) [5, 7]. The muscles included in the calculation of the muscle cross-sectional area are psoas, paraspinal muscles (erector spinae, quadratus lumborum), and abdominal wall muscles (transversus abdominis, external and internal obliques, rectus ab- dominis) [6]. CT also provided detail on specific muscles, adipose tissues, and organs not provided by DEXA or BIA. L3-targeted CT images could be theoretically per- formed solely, since they result in X-ray exposition similar to that of a chest radiography.

 

In summary, DEXA, BIA, and L3-targeted CT images could all measure body composition accurately. The technique selection will depend on the clinical context, hard- ware, and knowledge availability. Body composition evaluation by DEXA should be performed in patients having a routine assessment of bone mineral density. Also, analysis of L3-targeted CT is the method of choice for body composition evaluation in cancer patients. Body composition evaluation should also be done for every abdominal CT performed in patients who are nutritionally at risk or undernourished. Because of its simplicity of use, BIA could be widely implemented as a method of body com- position evaluation and follow-up in a great number of hospitalized and ambulatory patients. Future research will aim to determine whether a routine evaluation of body composition would allow early detection of the in- creased FFM catabolism related to critical illness [75].

Body Composition Evaluation For The Calculation Of Energy Needs

The evaluation of FFM could be used for the calculation of energy needs, thus allowing the optimization of nutritional intakes according to nutritional needs. This could be of great interest in specific situations, such as severe neurologic disability, overweight, and obesity. In 61 children with severe neurologic impairment and intellectual disability, an equation integrating body composition had good agreement with the doubly labeled water method. It gave a better estimation of energy expenditure than did the Schofield predictive equation [36]. However, in 9 anorexia nervosa patients with a mean BMI of 13.7, pre- diction formulas of resting energy expenditure including FFM did not allow accurate prediction of the resting energy expenditure measured by indirect calorimetry [76]. In overweight or obese patients, the muscle catabolism in response to inflammation was the same as that observed in patients with normal BMI. Indeed, despite a higher BMI, the FFM of overweight or obese individuals is similar (or slightly increased) to that of patients with normal BMI. Thus, the use of actual weight for the assessment of the energy needs of obese patients would result in over- feeding and its related complications. Therefore, the ex- perts recommend the use of indirect calorimetry or calculation of the energy needs of overweight or obese patients as follows: 15 kcal/kg actual weight/day or 20–25 kcal/kg ideal weight/day [77, 78], although these predictive formulas could be inaccurate in some clinical conditions [79]. In a US prospective study conducted in 33 ICU medical and surgical ventilated ICU patients, daily measurement of the active cell mass (table 2) by BIA was used to assess the adequacy between energy/protein intakes and needs. In that study, nutritional support with 30 kcal/ kg actual body weight/day energy and 1.5 g/kg/day protein allowed stabilization of the active cell mass [75]. Thus, follow-up of FFM by BIA could help optimize nutritional intakes when indirect calorimetry cannot be performed.

 

In summary, the measurement of FFM should help ad- just the calculation of energy needs (expressed as kcal/kg FFM) and optimize nutritional support in critical cases other than anorexia nervosa.

Body Composition Evaluation For The Follow-Up & Tailoring Of Nutritional Support

Body composition evaluation allows a qualitative assessment of body weight variations. The evaluation of body composition may help to document the efficiency of nutritional support during a patient’s follow-up of numerous clinical conditions, such as surgery [59], anorexia nervosa [76, 80], hematopoietic stem cell transplantation [81], COPD [82], ICU [83], lung transplantation [84], ulcerative colitis [59], Crohn’s disease [85], cancer [86, 87], HIV/AIDS [88], and acute stroke in elderly patients [89]. Body composition evaluation could be used for the follow-up of healthy elderly subjects [90]. Body composition evaluation allows characterization of the increase in body mass in terms of FFM and FM [81, 91]. After hematopoietic stem cell transplantation, the increase in BMI is the result of the increase in FM, but not of the increase in FFM [81]. Also, during recovery after an acute illness, weight gain 6 months after ICU discharge could be mostly related to an increase in FM (+7 kg) while FFM only increased by 2 kg; DEXA and air displacement plethysmography were used to measure the FM and FFM [91]. These two examples suggest that body composition evaluation could be helpful to decide the modification and/or the renewal of nutritional support. By identifying the patients gaining weight but reporting no or insufficient FFM, body composition evaluation could contribute to influencing the medical decision of continuing nutrition- al support that would have been stopped in the absence of body composition evaluation.

 

In summary, body composition evaluation is of the utmost interest for the follow-up of nutritional support and its impact on body compartments.

Body Composition Evaluation For Tailoring Medical Treatments

In clinical situations when weight and BMI do not reflect the FFM, the evaluation of body composition should be used to adapt drug doses to the FFM and/or FM absolute values in every patient. This point has been recently illustrated in oncology patients with sarcopenic obesity. FFM loss was determined by CT as described above. In cancer patients, some therapies could affect body com- position by inducing muscle wasting [92]. In patients with advanced renal cell carcinoma [92], sorafenib induces a significant 8% loss of skeletal muscular mass at 12 months. In turn, muscle wasting in patients with BMI less than 25 was significantly associated with sorafenib toxicity in patients with metastatic renal cancer [8]. In metastatic breast cancer patients receiving capecitabine treatment, and in patients with colorectal cancer receiving 5-fluorouracile, using the convention of dosing per unit of body surface area, FFM loss was the determinant of chemotherapy toxicity [9, 10] and time to tumor progression [10]. In colorectal cancer patients administered 5-fluoruracil, low FFM is a significant predictor of toxicity only in female patients [9]. The variation in toxicity between women and men may be partially explained by the fact that FFM was lower in females. Indeed, FFM rep- resents the distribution volume of most cytotoxic chemo- therapy drugs. In 2,115 cancer patients, the individual variations in FFM could change by up to three times the distribution volume of the chemotherapy drug per body area unit [5]. Thus, administering the same doses of chemotherapy drugs to a patient with a low FFM compared to a patient with a normal FFM would increase the risk of chemotherapy toxicity [5]. These data suggest that FFM loss could have a direct impact on the clinical outcome of cancer patients. Decreasing chemotherapy doses in case of FFM loss could contribute to improving cancer patients’ prognosis through the improvement of the tolerance of chemotherapy. These findings justify the systematic evaluation of body composition in all cancer patients in order to detect FFM loss, tailor chemotherapy doses according to FFM values, and then improve the efficacy- tolerance and cost-efficiency ratios of the therapeutic strategies [93]. Body composition evaluation should also be used to tailor the doses of drugs which are calculated based on patients’ weight, e.g. corticosteroids, immuno-suppressors (infliximab, azathioprine or methotrexate), or sedatives (propofol).

 

In summary, measurement of FFM should be implemented in cancer patients treated with chemotherapy. Clinical studies are needed to demonstrate the importance of measuring body composition in patients treated with other medical treatments.

Towards The Implementation Of Body Composition Evaluation In Clinical Practice

The implementation of body composition evaluation in routine care presents a challenge for the next decades. Indeed the concomitant increases in elderly subjects and patients with chronic diseases and cancer, and in the prevalence of overweight and obesity in the population, will increase the number of patients nutritionally at risk or undernourished, particularly those with sarcopenic obesity. Body composition evaluation should be used to improve the screening of undernutrition in hospitalized patients. The results of body composition should be based on the same principle as BMI calculation, towards the systematic normalization for body height of FFM (FFMI) and FM [FM (kg)/height (m)2 = FM index] [94]. The results could be expressed according to previously de- scribed percentiles of healthy subjects [95, 96]. Body com- position evaluation should be performed at the different stages of the disease, during the course of treatments and the rehabilitation phase. Such repeated evaluations of body composition could allow assessment of the nutritional status, adjusting the calculation of energy needs as kilocalories/kilogram FFM, following the efficacy of nutritional support, and tailoring drug and nutritional therapies. BIA, L3-targeted CT, and DEXA represent the techniques of choice to evaluate body composition in clinical practice (fig. 2). In the setting of cost-effective and pragmatic use, these three techniques should be alternatively chosen. In cancer, undernourished, and nutritionally at-risk patients, an abdominal CT should be completed by the analysis of L3-targeted images for the evaluation of body composition.

 

 

In other situations, BIA appears to be the simplest most reproducible and less expensive method, while DEXA, if feasible, remains the reference method for clinical practice. By allowing earlier management of undernutrition, body composition evaluation can contribute to reducing malnutrition-induced morbidity and mortality, improving the quality of life and, as a consequence, increasing the medico-economic benefits (fig. 1). The latter needs to be demonstrated. Moreover, based on a more scientific approach, i.e. allowing for printing reports, objective initial assessment and follow-up of nutritional status, and the adjustment of drug doses, body composition evaluation would contribute to a better recognition of the activities related to nutritional evaluation and care by the medical community, health care facilities, and health authorities (fig. 2).

Conclusion

Screening of undernutrition is insufficient to allow for optimal nutrition care. This is in part due to the lack of sensitivity of BMI and weight loss for detecting FFM loss in patients with chronic diseases. Methods of body com- position evaluation allow a quantitative measurement of FFM changes during the course of disease and could be used to detect FFM loss in the setting of an objective, systematic, and early undernutrition screening. FFM loss is closely related to impaired clinical outcomes, survival, and quality of life, as well as increased therapy toxicity in cancer patients. Thus, body composition evaluation should be integrated into clinical practice for the initial assessment, sequential follow-up of nutritional status, and the tailoring of nutritional and disease-specific therapies. Body composition evaluation could contribute to strengthening the role and credibility of nutrition in the global medical management, reducing the negative impact of malnutrition on the clinical outcome and quality of life, thereby increasing the overall medico-economic benefits.

 

Acknowledgements

 

R. Thibault and C. Pichard are supported by research grants from the public foundation Nutrition 2000 Plus.

 

Disclosure Statement

 

Ronan Thibault and Claude Pichard declare no conflict of interest.

 

References:

 

1 Pirlich M, Schutz T, Norman K, Gastell S,
Lübke HJ, Bischoff SC, Bolder U, Frieling
T, Güldenzoph H, Hahn K, Jauch KW,
Schindler K, Stein J, Volkert D, Weimann A,
Werner H, Wolf C, Zürcher G, Bauer P, Lochs
H: The German hospital malnutrition study.
Clin Nutr 2006;25:563–572.
2 Amaral TF, Matos LC, Tavares MM, Subtil
A, Martins R, Nazaré M, Sousa Pereira N:
The economic impact of disease-related malnutrition
at hospital admission. Clin Nutr
2007;26:778–784.
3 Pichard C, Kyle UG, Morabia A, Perrier A,
Vermeulen B, Unger P: Nutritional assessment:
lean body mass depletion at hospital
admission is associated with increased
length of stay. Am J Clin Nutr 2004;79:613–
618.
4 Capuano G, Gentile PC, Bianciardi F, Tosti
M, Palladino A, Di Palma M: Prevalence and
influence of malnutrition on quality of life
and performance status in patients with locally
advanced head and neck cancer before
treatment. Support Care Cancer 2010;18:
433–437.
5 Prado CM, Lieffers JR, McCargar LJ, Reiman
T, Sawyer MB, Martin L, Baracos VE: Prevalence
and clinical implications of sarcopenic
obesity in patients with solid tumours of the
respiratory and gastrointestinal tracts: a
population-based study. Lancet Oncol 2008;
9:629–635.
6 Tan BHL, Birdsell LA, Martin L, Baracos VE,
Fearon KC: Sarcopenia in an overweight or
obese patient is an adverse prognostic factor
in pancreatic cancer. Clin Cancer Res 2009;
15:6973–6979.
7 Baracos VE, Reiman T, Mourtzakis M,
Gioulbasanis I, Antoun S: Body composition
in patients with non-small cell lung cancer:
a contemporary view of cancer cachexia
with the use of computed tomography image
analysis. Am J Clin Nutr 2010;91(suppl):
1133S–1137S.
8 Antoun S, Baracos VE, Birdsell L, Escudier
B, Sawyer MB: Low body mass index and sarcopenia
associated with dose-limiting toxicity
of sorafenib in patients with renal cell carcinoma.
Ann Oncol 2010;21:1594–1598
9 Prado CM, Baracos VE, McCargar LJ,
Mourtzakis M, Mulder KE, Reiman T, Butts
CA, Scarfe AG, Sawyer MB: Body composition
as an independent determinant of 5-fluorouracil-based
chemotherapy toxicity. Clin
Cancer Res 2007;13:3264–3268.
10 Prado CM, Baracos VE, McCargar LJ, Reiman
T, Mourtzakis M, Tonkin K, Mackey JR,
Koski S, Pituskin E, Sawyer MB: Sarcopenia
as a determinant of chemotherapy toxicity
and time to tumor progression in metastatic
breast cancer patients receiving capecitabine
treatment. Clin Cancer Res 2009;15:2920–
2926.
11 Hofhuis JG, Spronk PE, van Stel HF, Schrijvers
GJ, Rommes JH, Bakker J: The impact of
critical illness on perceived health-related
quality of life during ICU treatment, hospital
stay, and after hospital discharge: a longterm
follow-up study. Chest 2008;133:377–
385.
12 Guest JF, Panca M, Baeyens JP, de Man F,
Ljungqvist O, Pichard C, Wait S, Wilson L:
Health economic impact of managing patients
following a community-based diagnosis
of malnutrition in the UK. Clin Nutr 2011;
30:422–429.
13 Kyle UG, Morabia A, Slosman DO, Mensi N,
Unger P, Pichard C: Contribution of body
composition to nutritional assessment at
hospital admission in 995 patients: a controlled
population study. Br J Nutr 2001;86:
725–731.
14 Kondrup J, Allison SP, Elia M; Vellas B,
Plauth M: Educational and Clinical Practice
Committee, European Society of Parenteral
and Enteral Nutrition (ESPEN): ESPEN
guidelines for nutrition screening 2002. Clin
Nutr 2003;22:415–421.
15 Haute Autorité de Santé: IPAQSS: informations.
2010. http://www.has-sante.fr/portail/
jcms/c_970427/ipaqss-informations.
16 World Health Organization: Obesity and
overweight: fact sheet No. 311. 2011. http://
www.who.int/mediacentre/factsheets/fs311/
en/index.html.
17 Thibault R, Chikhi M, Clerc A, Darmon P,
Chopard P, Picard-Kossovsky M, Genton L,
Pichard C: Assessment of food intake in hospitalised
patients: a 10 year-comparative
study of a prospective hospital survey. Clin
Nutr 2011;30:289–296.
18 Stenholm S, Harris TB, Rantanen T, Visser
M, Kritchevsky SB, Ferrucci L: Sarcopenic
obesity: definition, cause and consequences.
Curr Opin Clin Nutr Metab Care 2008;11:
693–700.
19 Pichard C, Kyle UG: Body composition measurements
during wasting diseases. Curr
Opin Clin Nutr Metab Care 1998;1:357–361.
20 Wang ZM, Pierson RN Jr, Heymsfield SB:
The five-level model: a new approach to organizing
body-composition research. Am J
Clin Nutr 1992;56:19–28.
21 Schols AM, Broekhuizen R, Weling-Scheepers
CA, Wouters EF: Body composition and
mortality in chronic obstructive pulmonary
disease. Am J Clin Nutr 2005;82:53–59.
22 Slinde F, Gronberg A, Engstrom CP, Rossander-Hulthen
L, Larsson S: Body composition
by bioelectrical impedance predicts
mortality in chronic obstructive pulmonary
disease patients. Respir Med 2005;99:1004–
1009.
23 Vestbo J, Prescott E, Almdal T, Dahl M, Nordestgaard
BG, Andersen T, Sorensen TI,
Lange P: Body mass, fat-free body mass, and
prognosis in patients with chronic obstructive
pulmonary disease from a random population
sample: findings from the Copenhagen
City Heart Study. Am J Respir Crit Care
Med 2006;173:79–83.
24 Segall L, Mardare NG, Ungureanu S, Busuioc
M, Nistor I, Enache R, Marian S, Covic A:
Nutritional status evaluation and survival in
haemodialysis patients in one centre from
Romania. Nephrol Dial Transplant 2009;24:
2536–2540.
25 Beddhu S, Pappas LM, Ramkumar N, Samore
M: Effects of body size and body composition
on survival in hemodialysis patients. J
Am Soc Nephrol 2003;14:2366–2372.
26 Fürstenberg A, Davenport A: Assessment
of body composition in peritoneal dialysis
patients using bioelectrical impedance and
dual-energy X-ray absorptiometry. Am J
Nephrol 2011;33:150–156.
27 Futter JE, Cleland JG, Clark AL: Body mass
indices and outcome in patients with chronic
heart failure. Eur J Heart Fail 2011;13:207–
213.
28 Marin B, Desport JC, Kajeu P, Jesus P, Nicolaud
B, Nicol M, Preux PM, Couratier P: Alteration
of nutritional status at diagnosis is
a prognostic factor for survival of amyotrophic
lateral sclerosis patients. J Neurol
Neurosurg Psychiatry 2011;82:628–634.
29 Janiszewski PM, Oeffinger KC, Church TS,
Dunn AL, Eshelman DA, Victor RG, Brooks
S, Turoff AJ, Sinclair E, Murray JC, Bashore
L, Ross R: Abdominal obesity, liver fat, and
muscle composition in survivors of childhood
acute lymphoblastic leukemia. J Clin
Endocrinol Metab 2007;92:3816–3821.
30 Wagner D, Adunka C, Kniepeiss D, Jakoby
E, Schaffellner S, Kandlbauer M, Fahrleitner-Pammer
A, Roller RE, Kornprat P, Müller
H, Iberer F, Tscheliessnigg KH: Serum albumin,
subjective global assessment, body
mass index and the bioimpedance analysis in
the assessment of malnutrition in patients up
to 15 years after liver transplantation. Clin
Transplant 2011;25:E396–E400.
31 Kimyagarov S, Klid R, Levenkrohn S, Fleissig
Y, Kopel B, Arad M, Adunsky A: Body
mass index (BMI), body composition and
mortality of nursing home elderly residents.
Arch Gerontol Geriatr 2010;51:227–230.
32 Buffa R, Mereu RM, Putzu PF, Floris G,
Marini E: Bioelectrical impedance vector
analysis detects low body cell mass and dehydration
in patients with Alzheimer’s disease.
J Nutr Health Aging 2010;14:823–827.
33 Schols AM, Wouters EF, Soeters PB, Westerterp
KR: Body composition by bioelectricalimpedance
analysis compared with deuterium
dilution and skinfold anthropometry in
patients with chronic obstructive pulmonary
disease. Am J Clin Nutr 1991;53:421–424.
34 Thibault R, Le Gallic E, Picard-Kossovsky
M, Darmaun D, Chambellan A: Assessment
of nutritional status and body composition
in patients with COPD: comparison of several
methods (in French). Rev Mal Respir
2010;27:693–702.
35 Kyle UG, Janssens JP, Rochat T, Raguso CA,
Pichard C: Body composition in patients
with chronic hypercapnic respiratory failure.
Respir Med 2006;100:244–252.
36 Rieken R, van Goudoever JB, Schierbeek H,
Willemsen SP, Calis EA, Tibboel D, Evenhuis
HM, Penning C: Measuring body composition
and energy expenditure in children with
severe neurologic impairment and intellectual
disability. Am J Clin Nutr 2011;94:759–
766
37 Avram MM, Fein PA, Borawski C, Chattopadhyay
J, Matza B: Extracellular mass/body
cell mass ratio is an independent predictor of
survival in peritoneal dialysis patients. Kidney
Int Suppl 2010;117:S37–S40.
38 Frisancho AR: New norms of upper limb fat
and muscle areas for assessment of nutritional
status. Am J Clin Nutr 1981;34:2540–2545.
39 Caregaro L, Alberino F, Amodio P, Merkel C,
Bolognesi M, Angeli P, Gatta A: Malnutrition
in alcoholic and virus-related cirrhosis.
Am J Clin Nutr l996;63:602–609.
40 Alberino F, Gatta A, Amodio P, Merkel C, Di
Pascoli L, Boffo G, Caregaro L: Nutrition and
survival in patients with liver cirrhosis. Nutrition
2001;17:445–450.
41 Liu E, Spiegelman D, Semu H, Hawkins C,
Chalamilla G, Aveika A, Nyamsangia S,
Mehta S, Mtasiwa D, Fawzi W: Nutritional
status and mortality among HIV-infected
patients receiving antiretroviral therapy in
Tanzania. J Infect Dis 2011;204:282–290.
42 Soler-Cataluna JJ, Sanchez-Sanchez L, Martinez-Garcia
MA, Sanchez PR, Salcedo E,
Navarro M: Mid-arm muscle area is a better
predictor of mortality than body mass index
in COPD. Chest 2005;128:2108–2115.
43 Marquis K, Debigaré R, Lacasse Y, LeBlanc P,
Jobin J, Carrier G, Maltais F: Midthigh muscle
cross-sectional area is a better predictor
of mortality than body mass index in patients
with chronic obstructive pulmonary
disease. Am J Respir Crit Care Med 2002;15;
166:809–813.
44 Kyle UG, Pirlich M, Lochs H, Schuetz T, Pichard
C: Increased length of hospital stay in
underweight and overweight patients at hospital
admission: a controlled population
study. Clin Nutr 2005;24:133–142.
45 Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg
P, Elia M, Gómez JM, Heitmann
BL, Kent-Smith L, Melchior JC, Pirlich M,
Scharfetter H, Schols AM, Pichard C, Composition
of the ESPEN Working Group. Bioelectrical
impedance analysis. 1. Review of
principles and methods. Clin Nutr 2004;23:
1226–1243.
46 Santarpia L, Marra M, Montagnese C, Alfonsi
L, Pasanisi F, Contaldo F: Prognostic
significance of bioelectrical impedance
phase angle in advanced cancer: preliminary
observations. Nutrition 2009;25:930–931.
47 Gupta D, Lammersfeld CA, Vashi PG, King
J, Dahlk SL, Grutsch JF, Lis CG: Bioelectrical
impedance phase angle in clinical practice:
implications for prognosis in stage IIIB and
IV non-small cell lung cancer. BMC Cancer
2009;9:37.
48 Gupta D, Lis CG, Dahlk SL, Vashi PG,
Grutsch JF, Lammersfeld CA: Bioelectrical
impedance phase angle as a prognostic indicator
in advanced pancreatic cancer. Br J
Nutr 2004;92:957–962.
49 Gupta D, Lammersfeld CA, Burrows JL,
Dahlk SL, Vashi PG, Grutsch JF, Hoffman S,
Lis CG: Bioelectrical impedance phase angle
in clinical practice: implications for prognosis
in advanced colorectal cancer. Am J Clin
Nutr 2004;80:1634–1638.
50 Paiva SI, Borges LR, Halpern-Silveira D, Assunção
MC, Barros AJ, Gonzalez MC: Standardized
phase angle from bioelectrical impedance
analysis as prognostic factor for
survival in patients with cancer. Support
Care Cancer 2010;19:187–192.
51 Schwenk A, Beisenherz A, Römer K, Kremer
G, Salzberger B, Elia M: Phase angle from
bioelectrical impedance analysis remains an
independent predictive marker in HIV-infected
patients in the era of highly active antiretroviral
treatment. Am J Clin Nutr 2000;
72:496–501.
52 Desport JC, Marin B, Funalot B, Preux PM,
Couratier P: Phase angle is a prognostic factor
for survival in amyotrophic lateral sclerosis.
Amyotroph Lateral Scler 2008;9:273–
278.
53 Wirth R, Volkert D, Rösler A, Sieber CC,
Bauer JM: Bioelectric impedance phase angle
is associated with hospital mortality of
geriatric patients. Arch Gerontol Geriatr
2010;51:290–294.
54 Mushnick R, Fein PA, Mittman N, Goel N,
Chattopadhyay J, Avram MM: Relationship
of bioelectrical impedance parameters to nutrition
and survival in peritoneal dialysis patients.
Kidney Int Suppl 2003;87:S53–S56.
55 Selberg O, Selberg D: Norms and correlates
of bioimpedance phase angle in healthy human
subjects, hospitalized patients, and patients
with liver cirrhosis. Eur J Appl Physiol
2002;86:509–516.
56 Shah S, Whalen C, Kotler DP, Mayanja H,
Namale A, Melikian G, Mugerwa R, Semba
RD: Severity of human immunodeficiency
virus infection is associated with decreased
phase angle, fat mass and body cell mass in
adults with pulmonary tuberculosis infection
in Uganda. J Nutr 2001;131:2843–2847.
57 Barbosa-Silva MC, Barros AJ: Bioelectric impedance
and individual characteristics as
prognostic factors for post-operative complications.
Clin Nutr 2005;24:830–838.
58 Durnin JV, Womersley J: Body fat assessed
from total body density and its estimation
from skinfold thickness: measurements on
481 men and women aged from 16 to 72
years. Br J Nutr 1974;32:77–97.
59 Hill GL: Body composition research: implications
for the practice of clinical nutrition.
JPEN J Parenter Enter Nutr 1992;16:197–218.
60 Pierson RN Jr, Wang J, Thornton JC, Van
Itallie TB, Colt EW: Body potassium by fourpi
40K counting: an anthropometric correction.
Am J Physiol 1984;246:F234–F239.
61 Sohlström A, Forsum E: Changes in total
body fat during the human reproductive cycle
as assessed by magnetic resonance imaging,
body water dilution, and skinfold thickness:
a comparison of methods. Am J Clin
Nutr 1997;66:1315–1322.
62 Leonard CM, Roza MA, Barr RD, Webber
CE: Reproducibility of DXA measurements
of bone mineral density and body composition
in children. Pediatr Radiol 2009;39:148–
154.
63 Genton L, Karsegard VL, Zawadynski S, Kyle
UG, Pichard C, Golay A, Hans DB: Comparison
of body weight and composition measured
by two different dual energy X-ray absorptiometry
devices and three acquisition
modes in obese women. Clin Nutr 2006;25:
428–437.
64 Jaffrin MY: Body composition determination
by bioimpedance: an update. Curr Opin
Clin Nutr Metab Care 2009;12:482–486.
65 Kyle UG, Pichard C, Rochat T, Slosman DO,
Fitting JW, Thiebaud D: New bioelectrical
impedance formula for patients with respiratory
insufficiency: comparison to dual-energy
X-ray absorptiometry. Eur Respir J 1998;
12:960–966.
66 Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg
P, Elia M, Manuel Gómez J, Lilienthal
Heitmann B, Kent-Smith L, Melchior
JC, Pirlich M, Scharfetter H, Schols AMWJ,
Pichard C, ESPEN: Bioelectrical impedance
analysis. 2. Utilization in clinical practice.
Clin Nutr 2004;23:1430–1453.
67 Mourtzakis M, Prado CM, Lieffers JR, Reiman
T, McCargar LJ, Baracos VE: A practical
and precise approach to quantification of
body composition in cancer patients using
computed tomography images acquired during
routine care. Appl Physiol Nutr Metab
2008;33:997–1006.
68 Bolton CE, Ionescu AA, Shiels KM, Pettit RJ,
Edwards PH, Stone MD, Nixon LS, Evans
WD, Griffiths TL, Shale DJ: Associated loss
of fat-free mass and bone mineral density in
chronic obstructive pulmonary disease. Am
J Respir Crit Care Med 2004;170:1286–1293.
69 Kyle UG, Genton L, Karsegard L, Slosman
DO, Pichard C: Single prediction equation
for bioelectrical impedance analysis in
adults aged 20–94 years. Nutrition 2001;17:
248–253.
70 Kyle UG, Genton L, Slosman DO, Pichard C:
Fat-free and fat mass percentiles in 5,225
healthy subjects aged 15 to 98 years. Nutrition
2001;17(7–8):534–541.
71 Kotler DP, Burastero S, Wang J, Pierson RN
Jr: Prediction of body cell mass, fat-free
mass, and total body water with bioelectrical
impedance analysis: effects of race, sex, and
disease. Am J Clin Nutr 1996;64:489S–497S.
72 Kyle UG, Genton L, Mentha G, Nicod L, Slosman
DO, Pichard C: Reliable bioelectrical
impedance analysis estimate of fat-free mass
in liver, lung, and heart transplant patients.
JPEN J Parenter Enteral Nutr 2001;25:45–51.
73 Mattar L, Godart N, Melchior JC, Falissard
B, Kolta S, Ringuenet D, Vindreau C, Nordon
C, Blanchet C, Pichard C: Underweight
patients with anorexia nervosa: comparison
of bioelectrical impedance analysis using
five equations to dual X-ray absorptiometry.
Clin Nutr 2011, E-pub ahead of print.
74 Genton L, Karsegard VL, Kyle UG, Hans DB,
Michel JP, Pichard C: Comparison of four
bioelectrical impedance analysis formulas in
healthy elderly subjects. Gerontology 2001;
47:315–323.
75 Robert S, Zarowitz BJ, Hyzy R, Eichenhorn
M, Peterson EL, Popovich J Jr: Bioelectrical
impedance assessment of nutritional status
in critically ill patients. Am J Clin Nutr 1993;
57:840–844.
76 Pichard C, Kyle UG, Slosman DO, Penalosa
B: Energy expenditure in anorexia nervosa:
can fat-free mass as measured by bioelectrical
impedance predict energy expenditure in
hospitalized patients? Clin Nutr 1996;15:
109–114.
77 Kreymann KG, Berger MM, Deutz NE, Hiesmayr
M, Jolliet P, Kazandjiev G, Nitenberg
G, van den Berghe G, Wernerman J, DGEM
(German Society for Nutritional Medicine),
Ebner C, Hartl W, Heymann C, Spies C, ESPEN:
ESPEN guidelines on enteral nutrition:
intensive care. Clin Nutr 2006;25:210–223.
78 Singer P, Berger MM, van den Berghe G, Biolo
G, Calder P, Forbes A, Griffiths R, Kreyman
G, Leverve X, Pichard C, ESPEN: ESPEN
guidelines on parenteral nutrition: intensive
care. Clin Nutr 2009;28:387–400.
79 Magnuson B, Peppard A, Auer Flomenhoft
D: Hypocaloric considerations in patients
with potentially hypometabolic disease
states. Nutr Clin Pract 2011;26:253–260.
80 Rigaud D, Boulier A, Tallonneau I, Brindisi
MC, Rozen R: Body fluid retention and body
weight change in anorexia nervosa patients
during refeeding. Clin Nutr 2010;29:749–
755.
81 Kyle UG, Chalandon Y, Miralbell R, Karsegard
VL, Hans D, Trombetti A, Rizzoli R,
Helg C, Pichard C: Longitudinal follow-up of
body composition in hematopoietic stem cell
transplant patients. Bone Marrow Transplant
2005;35:1171–1177.
82 Pison CM, Cano NJ, Cherion C, Caron F,
Court-Fortune I, Antonini M, GonzalezBermejo
J, Meziane L, Molano LC, Janssens
JP, Costes F, Wuyam B, Similowski T, Melloni
B, Hayot M, Augustin J, Tardif C,
Lejeune H, Roth H, Pichard C, the IRAD Investigators:
Multimodal nutritional rehabilitation
improves clinical outcomes of malnourished
patients with chronic respiratory
failure: a controlled randomised trial. Thorax
2011;66:953–960.
83 Pichard C, Kyle U, Chevrolet JC, Jolliet P,
Slosman D, Mensi N, Temler E, Ricou B: Lack
of effects of recombinant growth hormone
on muscle function in patients requiring
prolonged mechanical ventilation: a prospective,
randomized, controlled study. Crit
Care Med 1996;24:403–413.
84 Pichard C, Kyle UG, Jolliet P, Slosman DO,
Rochat T, Nicod L, Romand J, Mensi N,
Chevrolet JC: Treatment of cachexia with recombinant
growth hormone in a patient before
lung transplantation: a case report. Crit
Care Med 1999;27:1639–1642.
85 Leslie WD, Miller N, Rogala L, Bernstein
CN: Body mass and composition affect bone
density in recently diagnosed inflammatory
bowel disease: the Manitoba IBD Cohort
Study. Inflamm Bowel Dis 2009;15:39–46.
86 van der Meij BS, Langius JA, Smit EF,
Spreeuwenberg MD, von Blomberg BM,
Heijboer AC, Paul MA, van Leeuwen PA:
Oral nutritional supplements containing (n-
3) polyunsaturated fatty acids affect the nutritional
status of patients with stage III nonsmall
cell lung cancer during multimodality
treatment. J Nutr 2010;140:1774–1780.
87 Ryan AM, Reynolds JV, Healy L, Byrne M,
Moore J, Brannelly N, McHugh A, McCormack
D, Flood P: Enteral nutrition enriched
with eicosapentaenoic acid (EPA) preserves
lean body mass following esophageal cancer
surgery: results of a double-blinded randomized
controlled trial. Ann Surg 2009;249:
355–363.
88 Ndekha MJ, Oosterhout JJ, Zijlstra EE, Manary
M, Saloojee H, Manary MJ: Supplementary
feeding with either ready-to-use fortified
spread or corn-soy blend in wasted
adults starting antiretroviral therapy in Malawi:
randomised, investigator blinded, controlled
trial. BMJ 2009;338:b1867–b1875.
89 Ha L, Hauge T, Iversen PO: Body composition
in older acute stroke patients after treatment
with individualized, nutritional supplementation
while in hospital. BMC Geriatrics
2010;10:75.
90 Genton L, Karsegard VL, Chevalley T, Kossovsky
MP, Darmon P, Pichard C: Body
composition changes over 9 years in
healthy elderly subjects and impact of physical
activity. Clin Nutr 2011;30:436–442.
91 Reid CL, Murgatroyd PR, Wright A, Menon
DK: Quantification of lean and fat tissue repletion
following critical illness: a case report.
Crit Care 2008;12:R79.
92 Antoun S, Birdsel Ll, Sawyer MB, Venner P,
Escudier B, Baracos VE: Association of skeletal
muscle wasting with treatment with
sorafenib in patients with advanced renal
cell carcinoma: results from a placebo-controlled
study. J Clin Oncol 2010;28:1054–
1060.
93 Prado CM, Antoun S, Sawyer MB, Baracos
VE: Two faces of drug therapy in cancer:
drug-related lean tissue loss and its adverse
consequences to survival and toxicity. Curr
Opin Clin Nutr Metab Care 2011;14:250–
254.
94 Schutz Y, Kyle UG, Pichard C: Fat-free mass
index and fat mass index percentiles in Caucasians
aged 18–98 y. Int J Obes 2002;26:
953–960.
95 Kyle UG, Schutz Y, Dupertuis YM, Pichard
C: Body composition interpretation: contributions
of the fat-free mass index and the
body fat mass index. Nutrition 2003;19:597–
604.
96 Kyle UG, Piccoli A, Pichard C: Body composition
measurements: interpretation finally
made easy for clinical use. Curr Opin Clin
Nutr Metab Care 2003;6:387–393.

Dr. Alex Jimenez's insight:

Body composition evaluation should be integrated into clinical practice for initial assessment & sequential follow-up of nutritional status. For Answers to any questions you may have please call Dr. Jimenez at 915-850-0900

good health's curator insight, January 15, 9:14 AM

Acquista Online La Prescrizione Di Perdita Di Peso
Crediamo che i farmaci a volte possano essere molto urgenti da assumere. Se hai urgente bisogno di farmaci, possiamo anche fornirti una consegna espressa,


https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ozempic-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-victoza-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mysimba-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-wegovy-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-phentermine-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adipex-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vyvanse-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-percocet-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-stilnox-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-subutex-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-metadone/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-botox-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adma-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ativan-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-demerol-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-depalgo-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-diazepam-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-endocet-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-opana-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vicodin-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/

https://globalefarmacia.com/Prodotto/acquista-ozempic-online/
https://globalefarmacia.com/Prodotto/acquista-victoza-online/
https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/
https://globalefarmacia.com/Prodotto/acquista-mysimba-online/
https://globalefarmacia.com/Prodotto/acquista-wegovy-online/
https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/
https://globalefarmacia.com/Prodotto/acquista-phentermine-online/
https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/
https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/
https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/
https://globalefarmacia.com/Prodotto/acquista-adipex-online/
https://globalefarmacia.com/Prodotto/acquista-vyvanse-online/
https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/
https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/
https://globalefarmacia.com/Prodotto/acquista-percocet-online/
https://globalefarmacia.com/Prodotto/acquista-stilnox-online/
https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/
https://globalefarmacia.com/Prodotto/acquista-subutex-online/
https://globalefarmacia.com/Prodotto/acquista-metadone/
https://globalefarmacia.com/Prodotto/acquista-botox-online/
https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/
https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/
https://globalefarmacia.com/Prodotto/acquista-adma-online/
https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/
https://globalefarmacia.com/Prodotto/acquista-ativan-online/
https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/
https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/
https://globalefarmacia.com/Prodotto/acquista-codeina-online/
https://globalefarmacia.com/Prodotto/acquista-demerol-online/
https://globalefarmacia.com/Prodotto/acquista-depalgo-online/
https://globalefarmacia.com/Prodotto/acquista-diazepam-online/
https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/
https://globalefarmacia.com/Prodotto/acquista-endocet-online/
https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/
https://globalefarmacia.com/Prodotto/acquista-opana-online/
https://globalefarmacia.com/Prodotto/acquista-vicodin-online/
https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/
https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/
https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/
https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/


<a href="https://globalefarmacia.com/Prodotto/acquista-ozempic-online/">acquista-ozempic-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-victoza-online/">acquista-victoza-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/">acquista-mounjaro-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-mysimba-online/">acquista-mysimba-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-wegovy-online/">acquista-wegovy-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/">acquistare-saxenda-6mg-ml-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-phentermine-online/">acquista-phentermine-online</a>;
<a href="https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/">ephedrine-hcl-30mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/">acquista-ossicodone-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/">acquista-oxycontin-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-percocet-online/">acquista-percocet-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-stilnox-online/">acquista-stilnox-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/">acquista-suboxone-8mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-subutex-online/">acquista-subutex-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-metadone/">acquista-metadone</a>;
<a href="https://globalefarmacia.com/Prodotto/buy-vyvanse-online/">buy-vyvanse-online</a>;
<a href="https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/">a-215-ossicodone-actavis</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/">acquista-adderall-30mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-adipex-online/">acquista-adipex-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-adma-online/">acquista-adma-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-ativan-online/">acquista-ativan-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-botox-online/">acquista-botox-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/">acquista-cerotti-al-fentanil</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/">acquista-codeina-linctus-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-codeina-online/">ta-codeina-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-demerol-online/">acquista-demerol-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-depalgo-online/">acquista-depalgo-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-diazepam-online/">acquista-diazepam-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/">acquista-dilaudid-8mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-endocet-online/">acquista-endocet-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/">acquista-eroina-bianca</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/">acquista-l-ritalin-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-opana-online/">acquista-opana-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-vicodin-online/">acquista-vicodin-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/">acquista-xanax-2mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/">acquistare-rohypnol-2mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/">acquistare-sibutramina-online</a>;
<a href="https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/">efedrina-hcl-in-polvere</a>;
<a href="https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/">sciroppo-di-metadone</a>;
<a href="https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/">tramadolo-hcl-200mg</a>;

 


<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ozempic-online/&quot; rel="dofollow">acquista-ozempic-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-victoza-online/&quot; rel="dofollow">acquista-victoza-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/&quot; rel="dofollow">acquista-mounjaro-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mysimba-online/&quot; rel="dofollow">acquista-mysimba-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-wegovy-online/&quot; rel="dofollow">acquista-wegovy-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/&quot; rel="dofollow">acquistare-saxenda-6mg-ml-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-phentermine-online/&quot; rel="dofollow">acquista-phentermine-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/&quot; rel="dofollow">acquistare-sibutramina-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/&quot; rel="dofollow">ephedrine-hcl-30mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/&quot; rel="dofollow">acquista-adderall-30mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adipex-online/&quot; rel="dofollow">acquista-adipex-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vyvanse-online/&quot; rel="dofollow">acquista-vyvanse-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/&quot; rel="dofollow">acquista-ossicodone-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/&quot; rel="dofollow">acquista-oxycontin-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-percocet-online/&quot; rel="dofollow">acquista-percocet-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-stilnox-online/&quot; rel="dofollow">acquista-stilnox-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/&quot; rel="dofollow">acquista-suboxone-8mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-subutex-online/&quot; rel="dofollow">acquista-subutex-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-metadone/&quot; rel="dofollow">acquista-metadone</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-botox-online/&quot; rel="dofollow">acquista-botox-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/&quot; rel="dofollow">acquistare-rohypnol-2mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/&quot; rel="dofollow">acquistare-rohypnol-2mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adma-online/&quot; rel="dofollow">acquista-adma-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/&quot; rel="dofollow">a-215-ossicodone-actavis</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ativan-online/&quot; rel="dofollow">acquista-ativan-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/&quot; rel="dofollow">acquista-cerotti-al-fentanil</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/&quot; rel="dofollow">acquista-codeina-linctus-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-online/&quot; rel="dofollow">acquista-codeina-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-demerol-online/&quot; rel="dofollow">acquista-demerol-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-depalgo-online/&quot; rel="dofollow">acquista-depalgo-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-diazepam-online/&quot; rel="dofollow">acquista-diazepam-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/&quot; rel="dofollow">acquista-dilaudid-8mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-endocet-online/&quot; rel="dofollow">acquista-endocet-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/&quot; rel="dofollow">acquista-eroina-bianca</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-opana-online/&quot; rel="dofollow">acquista-opana-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vicodin-online/&quot; rel="dofollow">acquista-vicodin-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/&quot; rel="dofollow">acquista-xanax-2mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/&quot; rel="dofollow">efedrina-hcl-in-polvere</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/&quot; rel="dofollow">sciroppo-di-metadone</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/&quot; rel="dofollow">tramadolo-hcl-200mg</a>

https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ozempic-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-victoza-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mysimba-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-wegovy-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-phentermine-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adipex-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vyvanse-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-percocet-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-stilnox-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-subutex-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-metadone/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-botox-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adma-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ativan-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-demerol-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-depalgo-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-diazepam-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-endocet-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-opana-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vicodin-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/


<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ozempic-online/&quot; rel="dofollow">acquista-ozempic-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-victoza-online/&quot; rel="dofollow">acquista-victoza-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/&quot; rel="dofollow">acquista-mounjaro-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mysimba-online/&quot; rel="dofollow">acquista-mysimba-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-wegovy-online/&quot; rel="dofollow">acquista-wegovy-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/&quot; rel="dofollow">acquistare-saxenda-6mg-ml-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-phentermine-online/&quot; rel="dofollow">acquista-phentermine-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/&quot; rel="dofollow">acquistare-sibutramina-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/&quot; rel="dofollow">ephedrine-hcl-30mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/&quot; rel="dofollow">acquista-adderall-30mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adipex-online/&quot; rel="dofollow">acquista-adipex-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vyvanse-online/&quot; rel="dofollow">acquista-vyvanse-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/&quot; rel="dofollow">acquista-ossicodone-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/&quot; rel="dofollow">acquista-oxycontin-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-percocet-online/&quot; rel="dofollow">acquista-percocet-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-stilnox-online/&quot; rel="dofollow">acquista-stilnox-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/&quot; rel="dofollow">acquista-suboxone-8mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-subutex-online/&quot; rel="dofollow">acquista-subutex-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-metadone/&quot; rel="dofollow">acquista-metadone</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-botox-online/&quot; rel="dofollow">acquista-botox-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/&quot; rel="dofollow">acquistare-rohypnol-2mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/&quot; rel="dofollow">acquistare-rohypnol-2mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adma-online/&quot; rel="dofollow">acquista-adma-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/&quot; rel="dofollow">a-215-ossicodone-actavis</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ativan-online/&quot; rel="dofollow">acquista-ativan-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/&quot; rel="dofollow">acquista-cerotti-al-fentanil</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/&quot; rel="dofollow">acquista-codeina-linctus-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-online/&quot; rel="dofollow">acquista-codeina-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-demerol-online/&quot; rel="dofollow">acquista-demerol-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-depalgo-online/&quot; rel="dofollow">acquista-depalgo-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-diazepam-online/&quot; rel="dofollow">acquista-diazepam-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/&quot; rel="dofollow">acquista-dilaudid-8mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-endocet-online/&quot; rel="dofollow">acquista-endocet-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/&quot; rel="dofollow">acquista-eroina-bianca</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-opana-online/&quot; rel="dofollow">acquista-opana-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vicodin-online/&quot; rel="dofollow">acquista-vicodin-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/&quot; rel="dofollow">acquista-xanax-2mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/&quot; rel="dofollow">efedrina-hcl-in-polvere</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/&quot; rel="dofollow">sciroppo-di-metadone</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/&quot; rel="dofollow">tramadolo-hcl-200mg</a>

Scooped by Dr. Alex Jimenez
Scoop.it!

Diet and Nutritional Supplements Effects On Chronic Pain | Call: 915-850-0900 or 915-412-6677

Diet and Nutritional Supplements Effects On Chronic Pain | Call: 915-850-0900 or 915-412-6677 | Diet and Supplements | Scoop.it

Nutrition is how the body utilizes consumed food. Nutrition plays a role in chronic pain; lifestyle behaviors can influence how food contributes to illness/diseases. A common cause of chronic pain is chronic systemic inflammation. Inflammation plays a role in many chronic disease conditions, including diabetes, heart disease, and cancer. Reducing inflammation can be achieved by adjusting diet to get individuals back to feeling better quickly and to aid them in maintaining and improving their overall health. Injury Medical Chiropractic and Functional Medicine Clinic offer diet and nutritional supplements guidance as part of a personalized treatment plan.

Inflammation

The purpose of the inflammatory response includes:

 

  • Isolate the dangerous bacteria, viruses, or damaged cells.
  • Flush out the dead cells and other damaging substances.
  • Initiate the repair/healing process.

Types of inflammation

  • Localized inflammation occurs at the site of an injury or infection.
  • A sprained ankle that becomes swollen and painful or a cut that gets infected and becomes red and swollen are examples of localized inflammation.
  • Systemic inflammation occurs throughout the body. External factors can trigger this type of inflammation.
  • Viral and Bacterial infections.
  • Allergens or toxins in food and the environment.
  • Smoking
  • Alcohol consumption
  • It can also be triggered by internal factors, including:
  • Stress
  • Obesity
  • Autoimmune conditions
  • Genetic variations

Optimizing Diet and Nutritional Supplements Effect on Chronic Pain

The body needs protein, carbohydrates, fat, fiber, vitamins, and minerals for the health and the prevention of chronic disease.

  • Dietary intake can enhance the function of the nervous system, immune system, and endocrine system that directly affects pain symptoms and episodes.
  • Losing weight decreases the added pressure on joints and reduces inflammation.
  • Dietary intake and weight status impact the risk and/or severity of other chronic diseases that include:
  • Cardiovascular disease
  • Diabetes
  • Anxiety
  • Depression
  • Often occur simultaneously with chronic pain.

 

Prescribed diet modification, also known as diet therapy includes:

 

  • Modifying the entire diet.
  • Supplementing the diet with specific nutrients.
  • Changing dietary patterns to induce a fasting state.

 

Benefits include:

 

  • Calorie reduction
  • Increased antioxidants
  • Prebiotic supplementation for gastrointestinal health.

 

These approaches positively impact comorbidities of chronic pain and promote secondary gains, including:

 

  • Pain alleviation and management.
  • A positive promotion of health and well-being.
  • Reductions of comorbidities like obesity and cardiovascular disease.
  • Reducing healthcare costs.

Vitamin and Mineral Supplements

Diet and nutritional supplements provide added essential nutrients to a damaged, inflamed, or injured body. Dietary supplements improve overall health and wellness.

 

  • Vitamin D and calcium tablets help maintain optimal bone health, as low vitamin D levels can lead to back pain.
  • Omega-3 fatty acids help reduce inflammation.
  • Vitamins E and C, combined with copper, help with blood production, tissue repair, and brain and skin health.
  • Folic acid can help with joint pain and myofascial pain.
  • Vitamins can help with pain and prevent liver dysfunction.

 

Nutritional supplements support the body until the body and/or organs have correctly healed. Recovery from an injury could cause body stress that can interfere with the healing process. Diet and nutritional supplements expedite the healing and recovery process by:

  • Helping overcome dietary deficiencies.
  • Improving immune system function.
  • Detoxifying toxins.
  • Contain antioxidants that help the body stay toxin-free.

 

Chiropractic restores and realigns the body by incorporating supplements to nourish the body tissues and recover optimally from injury.

InBody Nutrition

 

General Disclaimer *

The information herein is not intended to replace a one-on-one relationship with a qualified health care professional, or licensed physician, and is not medical advice. We encourage you to make your own healthcare decisions based on your research and partnership with a qualified healthcare professional. Our information scope is limited to chiropractic, musculoskeletal, physical medicines, wellness, sensitive health issues, functional medicine articles, topics, and discussions. We provide and present clinical collaboration with specialists from a wide array of disciplines. Each specialist is governed by their professional scope of practice and their jurisdiction of licensure. We use functional health & wellness protocols to treat and support care for the injuries or disorders of the musculoskeletal system. Our videos, posts, topics, subjects, and insights cover clinical matters, issues, and topics that relate to and support, directly or indirectly, our clinical scope of practice.* Our office has made a reasonable attempt to provide supportive citations and has identified the relevant research study or studies supporting our posts. We provide copies of supporting research studies available to regulatory boards and the public upon request.

We understand that we cover matters that require an additional explanation of how it may assist in a particular care plan or treatment protocol; therefore, to further discuss the subject matter above, please feel free to ask Dr. Alex Jimenez or contact us at 915-850-0900.

 

Dr. Alex Jimenez DC, MSACPCCSTIFMCP*, CIFM*, ATN*

email: coach@elpasofunctionalmedicine.com

Licensed in: Texas & New Mexico*

References

Dragan, Simona, et al. “Dietary Patterns and Interventions to Alleviate Chronic Pain.” Nutrients vol. 12,9 2510. 19 Aug. 2020, doi:10.3390/nu12092510

 

Lee, Mi Kyung, et al. “The use of nutritional guidance within chiropractic patient management: a survey of 333 chiropractors from the ACORN practice-based research network.” Chiropractic & manual therapies vol. 26 7. 20 Feb. 2018, doi:10.1186/s12998-018-0175-1

 

Li, Chuan, et al. “Macrophage polarization and meta-inflammation.” Translational research: the journal of laboratory and clinical medicine vol. 191 (2018): 29-44. doi:10.1016/j.trsl.2017.10.004

 

Nutrition and Chronic Pain https://www.iasp-pain.org/resources/fact-sheets/nutrition-and-chronic-pain/

 

Pahwa R, Goyal A, Jialal I. Chronic Inflammation. [Updated 2021 Sep 28]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK493173/

Dr. Alex Jimenez's insight:

Injury Medical Chiropractic and Functional Medicine Clinic offer diet and nutritional supplements guidance as part of a treatment plan. For answers to any questions, you may have, please call Dr. Jimenez at 915-850-0900 or 915-412-6677

No comment yet.
Scooped by Dr. Alex Jimenez
Scoop.it!

Anti-Inflammatory Foods and A Customized Treatment Plan | Call: 915-850-0900 or 915-412-6677

Anti-Inflammatory Foods and A Customized Treatment Plan | Call: 915-850-0900 or 915-412-6677 | Diet and Supplements | Scoop.it

Chiropractors do far more than provide musculoskeletal adjustments for proper alignment and function of the spine.  They help bring the body back into balance, achieve and maintain optimal health. Every individual receives a personalized/customized treatment plan that covers aspects more than chiropractic adjusting. This includes:

 

  • Home pain relief
  • Stretches
  • Physical therapy
  • Lifestyle adjustments

 

When treatment only focuses on symptoms and not the whole body, the plan is incomplete and may not be successful. At Injury Medical Chiropractic and Functional Medicine Clinic, we recommend incorporating a variety of treatment approaches for the best results. One area that is often overlooked in treatment is individual diet. The food that individuals consume could cause or be contributing to inflammatory responses that cause or worsen pain symptoms. Adding anti-inflammatory foods to an individual's diet can help reduce inflammation and enhance the treatment plan.

Chronic inflammation pain

Inflammation is a normal body response that helps fight infections and heal damaged tissues. Too much inflammation can become chronic and harmful to the body. Chronic inflammation has been linked to various health problems, that affect both long-term and short-term health issues like reduced mobility and pain. A chiropractic treatment plan can help alleviate the inflammation and improve the symptoms associated with inflammation. However, chronic inflammation can be worsened by lifestyle factors that include:

 

  • Lack of physical activity
  • Unhealthy stress management
  • Not properly sleeping
  • Unhealthy Diet

 

Making healthy diet adjustments from inflammatory foods to anti-inflammatory will reduce chronic inflammation throughout the body. Combined with a complete chiropractic treatment plan, nutritional changes can help in alleviating pain, reducing the need for anti-inflammatory medications.

Top anti-inflammatory foods

There are foods that are known for their anti-inflammatory properties. Increasing consumption of anti-inflammatory foods and reducing foods that generate inflammatory responses will help reduce inflammation and pain. These include:

Fatty fish

Fatty fish is one of the best anti-inflammatory foods because they are full of omega-3 fatty acids. These acids help fight and neutralize other acids in the body that increase inflammation. They include:

 

  • Salmon
  • Sardines
  • Mackerel
  • Herring are a few examples of anti-inflammatory-rich fish.

Green tea

Green tea is filled with antioxidant compounds known as epigallocatechin-3-gallate/EGCG. EGCG is known to strengthen and reinforce the immune system, which reduces inflammation.

Dark, leafy greens:

Dark, leafy vegetables contain anti-inflammatory flavonoids and antioxidants both help reduce inflammatory responses. These include:

 

  • Spinach
  • Bok Choy
  • Collards
  • Kale

 

Turmeric

This spice has been shown to contain a variety of healing compounds, antioxidants, and anti-inflammatory agents. The active ingredient curcumin is believed to be the main source.

Nuts

Most nuts and seeds contain omega-3 fatty acids along with other anti-inflammatory compounds. A handful of nuts and seeds as a quick snack every day can reduce inflammation and along with other health benefits. These include:

 

  • Almonds
  • Cashews
  • Hazelnuts
  • Peanuts
  • Pecans
  • Pistachios
  • Walnuts

 

Reduction of Inflammatory foods

Pro-inflammatory foods should also be reduced. These include:

 

 

At Injury Medical Chiropractic and Functional Medicine Clinic, we educate individuals on their diet, exercise, lifestyle, and help them achieve optimal health. Contact us today to learn more.

Body Composition

 

Personalized Lifestyle Medicine

Personalized lifestyle medicine is a model of medicine that looks at every individual's case when making health recommendations. It looks at how the body works as an integrated system and combines new technology approaches that include gene expression, life, behavioral sciences, and nutrigenomics. Nutrigenomics involves the science of analyzing and understanding gene and nutrient interactions. It is defined as the relationship between nutrients and gene expression. Nutrigenomic testing can help individuals understand the influence of dietary components on their genes. This could help prevent the development of chronic diseases. Essentially, it can tell individuals how well the body is absorbing certain nutrients from specific foods. If there are issues being able to make adjustments.

Disclaimer

The information herein is not intended to replace a one-on-one relationship with a qualified health care professional, licensed physician, and is not medical advice. We encourage you to make your own health care decisions based on your research and partnership with a qualified health care professional. Our information scope is limited to chiropractic, musculoskeletal, physical medicines, wellness, sensitive health issues, functional medicine articles, topics, and discussions. We provide and present clinical collaboration with specialists from a wide array of disciplines. Each specialist is governed by their professional scope of practice and their jurisdiction of licensure. We use functional health & wellness protocols to treat and support care for the musculoskeletal system’s injuries or disorders. Our videos, posts, topics, subjects, and insights cover clinical matters, issues, and topics that relate to and support, directly or indirectly, our clinical scope of practice.*Our office has made a reasonable attempt to provide supportive citations and has identified the relevant research study or studies supporting our posts. We provide copies of supporting research studies available to regulatory boards and the public upon request. We understand that we cover matters that require an additional explanation of how it may assist in a particular care plan or treatment protocol; therefore, to further discuss the subject matter above, please feel free to ask Dr. Alex Jimenez or contact us at 915-850-0900.

 

Dr. Alex Jimenez DC, MSACP, CCST, IFMCP*, CIFM*, CTG*
email: coach@elpasofunctionalmedicine.com
phone: 915-850-0900
Licensed in Texas & New Mexico

References

Adam O, Beringer C, Kless T, Lemmen C, Adam A, Wiseman M et al. Anti-inflammatory effects of a low arachidonic acid diet and fish oil in patients with rheumatoid arthritis [abstract]. Rheumatol Int. 2003;23(1):27-36. doi: 10.1007/s00296-002-0234-7.

 

Dr. Weil's anti-inflammatory food pyramid. Dr. Weil Web site.  http://www.drweil.com/drw/ecs/pyramid/press-foodpyramid.html. Accessed April 22, 2011.

Dr. Alex Jimenez's insight:

Chiropractors do far more than provide musculoskeletal adjustments for proper alignment and function of the spine. For answers to any questions you may have please call Dr. Jimenez at 915-850-0900 or 915-412-6677

No comment yet.
Scooped by Dr. Alex Jimenez
Scoop.it!

Fasting and Chronic Pain | El Paso, TX Chiropractor | Call: 915-850-0900

Fasting and Chronic Pain | El Paso, TX Chiropractor | Call: 915-850-0900 | Diet and Supplements | Scoop.it

Chronic pain is a common health issue which affects many people in the United States. While several medical conditions, such as fibromyalgia and myofascial pain syndrome, can cause chronic pain, it may also develop due to a variety of other health issues.

 

Research studies have found that widespread inflammation is the leading cause of chronic pain. Inflammation is a natural defense mechanism to injury, illness, or infection. But, if the inflammatory process continues for too long, it can become problematic.

 

Inflammation signals the immune system to heal and repair damaged tissue as well as to protect itself against bacteria and viruses. As mentioned above, however, chronic inflammation can cause a variety of health issues, including chronic pain symptoms. Healthy lifestyle modifications can help manage chronic pain, but first, let’s understand the common causes of chronic pain.

Dr. Alex Jimenez's insight:

Inflammation is the immune system’s natural defense mechanism against injury, illness, or infection. While this inflammatory response can help heal and repair tissues, chronic, widespread inflammation can cause a variety of health issues, including chronic pain symptoms. A balanced nutrition, including a variety of diets and fasting, can help reduce inflammation. Before following any of the diets described in this article, make sure to consult a doctor. For more information, please feel free to ask Dr. Alex Jimenez or contact us at (915) 850-0900. 

No comment yet.
Scooped by Dr. Alex Jimenez
Scoop.it!

What Fats to Eat on the Ketogenic Diet | El Paso, TX Chiropractor | Call: 915-850-0900 

What Fats to Eat on the Ketogenic Diet | El Paso, TX Chiropractor | Call: 915-850-0900  | Diet and Supplements | Scoop.it

Fats are an essential part of the ketogenic diet since they constitute approximately 70 percent of your dietary calories. The type of fat you eat on the ketogenic diet is also important and there may be some confusion regarding good fats and bad fats. The following article discusses exactly what fats you need to include and what fats you must avoid while on the keto diet.

 

Good Fats on the Ketogenic Diet


The type of “good” fats included while on the ketogenic diet are divided into four groups: saturated fats, monounsaturated fats (MUFAs), polyunsaturated fats (PUFAs), and naturally-occurring trans fats. All fats can be classified into more than one group, however, we classify them according to the most dominant of these mixtures. It’s essential to be able to recognize what type of fat you are eating on the ketogenic diet. Below, we will describe each group of good fat so you can properly implement them into your own food choices.

Dr. Alex Jimenez's insight:

When following a ketogenic diet, or any other low carb diet, eating the right type of fat is essential, especially since these makeup about 70 percent of your daily caloric intake. The type of fat you eat is classified into various groups depending on the dominant amount found in the mixture. It’s essential to be able to recognize what type of fat you are eating on the ketogenic diet in order to enjoy its health benefits. For more information, please feel free to ask Dr. Alex Jimenez or contact us at (915) 850-0900.

No comment yet.
Scooped by Dr. Alex Jimenez
Scoop.it!

Ketogenic Diet in Cancer Treatment | El Paso, TX Chiropractor | Call: 915-850-0900 

Ketogenic Diet in Cancer Treatment | El Paso, TX Chiropractor | Call: 915-850-0900  | Diet and Supplements | Scoop.it

Cancer is the second leading cause of death in the United States. Research studies have estimated that approximately 595,690 Americans die from cancer every year, that’s about 1,600 deaths every day, on average. Cancer is frequently treated utilizing a combination of surgery, chemotherapy, and radiation. Recent research studies have analyzed a variety of nutritional strategies for cancer treatment. Early research studies suggest that the ketogenic diet may help treat cancer.

 

What is the Ketogenic Diet?


The ketogenic diet is a very low-carb, high-fat diet which is often compared with the Atkins diet and other low carb diets. Also commonly known as the keto diet, this nutritional strategy entails drastically reducing your consumption of carbohydrates and instead substituting them with fat. This dietary shift is what causes the human body to enter a state of ketosis, the well-known metabolic state associated with the keto diet. Ketosis utilizes fat as the cell’s main source of energy, rather than sugar or glucose.

 

Ketosis causes a considerable increase in the levels of ketones. In general, a ketogenic diet used for weight loss consists of about 60 to 75 percent of calories from fat, with 15 to 30 percent of calories from protein and 5 to 10 percent of calories from carbohydrates. However, when a ketogenic diet is used therapeutically to treat cancer, the fat content might be significantly higher, up to 90 percent of calories from fat, and the protein content will also be considerably lower, up to 5 percent of calories from protein.

Dr. Alex Jimenez's insight:

Emerging research studies continue to demonstrate that sugar or glucose is the main source of fuel for cancer. Researchers have attempted to demonstrate that regulating the metabolic functions within the human body is the real solution towards treating cancer. The ketogenic diet can help treat cancer because it limits the amount of sugar in the body and instead replaces it with ketones, “starving” cancer cells and decreasing cell growth and cancer progression. For more information, please feel free to ask Dr. Alex Jimenez or contact us at (915) 850-0900. 

No comment yet.
Scooped by Dr. Alex Jimenez
Scoop.it!

Curcumin Boosts Brain Health | El Paso, TX Chiropractor | Call: 915-850-0900

Curcumin Boosts Brain Health | El Paso, TX Chiropractor | Call: 915-850-0900 | Diet and Supplements | Scoop.it

How important is nutrition for our brain health? In the current work force, we are continuously stressed, often forced to finish tasks faster in order to meet ever so demanding deadlines. In addition, we are expected to maintain our optimal mental health, as this can be an essential part towards delivering quality work. When our mental health is being affected by our hectic lifestyles, however, several practices which can help you start thinking more clearly can include sleeping properly, controlling stress, and even taking nutritional supplements for your brain health.

 

One nutritional supplement which has been widely recognized for its ability to boost brain health is curcumin, the active ingredient found in turmeric. Well-known for its antioxidant properties and its capacity to control inflammation in the human body, this powerful herb can also promote good mood and cognition. Another specific group which has reported significant benefits with the increased use of curcumin, is the elderly population. Below, we will discuss how curcumin can help boost brain health as well as demonstrate additional benefits this golden gem can have on our overall health and wellness.

Dr. Alex Jimenez's insight:

Nutrition is a fundamental factor in overall health and wellness. In today’s stressful world, however, it can often become difficult to eat a proper meal, let alone making sure people are taking in all the necessary nutrients they require on a regular basis. That, plus the added pressure of the workforce can have detrimental effects on brain health. Dietary supplements, such as curcumin, have been demonstrated to have tremendous benefits on brain health. For more information, please feel free to ask Dr. Jimenez or contact us at (915) 850-0900. 

No comment yet.
Scooped by Dr. Alex Jimenez
Scoop.it!

Natural Remedies and Botanicals to Promote Sleep | El Paso, TX Chiropractor | Call: 915-850-0900

Natural Remedies and Botanicals to Promote Sleep | El Paso, TX Chiropractor | Call: 915-850-0900 | Diet and Supplements | Scoop.it

Envision yourself waking up entirely rested, prepared to deal with any obstacle and adopt all the joys of the world with gratitude. The majority of us know what a good night’s sleep resembles, but are we really getting the proper rest we should be getting? Within this stressful universe, it’s tough to achieve the sleep schedule that our brains and bodies require to operate to its fullest potential.

 

Proper sleep hygiene and the application of organic herbs and botanicals can help promote a healthy amount of sleep. The outcome could result in a wide array of benefits, including an improvement in problem solving and work performance, weight management, and even promote the prevention of chronic health issues, such as diabetes, cardiovascular disease and mood disorders like depression. You may find numerous products and information regarding how to manage proper sleep. A research study from 2016 indicated that individuals in the United States alone spent over $41 billion on sleeping treatments, where it is expected to rise up to $52 billion by the year 2020.

Dr. Alex Jimenez's insight:

Natural remedies and botanicals are a natural option for promoting sleep. While various herbs taken in numerous forms can help provide a good night’s rest, other alternative treatment options can also be considered to get you through a full night of rest. Chiropractic care can help promote sleep by carefully correcting spinal misalignments, or subluxations, through spinal adjustments and manual manipulations, among other techniques. For more information, please feel free to ask Dr. Jimenez or contact us at (915) 850-0900.

No comment yet.
Scooped by Dr. Alex Jimenez
Scoop.it!

Hemp, What Is It Exactly?

Hemp, What Is It Exactly? | Diet and Supplements | Scoop.it

Hemp, is one of the oldest cultivated crops, which was grown thousands of years ago in Asia as a food source. Ancient civilizations wove the strong and durable fibers into clothing and rope.1

 

It helped Christopher Columbus with the ships he sailed, both the sails and ropes were made of hemp and it was also placed between the planks to help the ships remain watertight.2

Two Plants With Completely Different Uses 

Hemp (Cannabis Sativa)

In this form is cultivated outside the United States (however, the U.S. Government has allowed it to be grown for research purposes) for clothing, paper, dietary supplements, cosmetics, foods, biofuels, and bioplastics. European hemp has less than 0.3% of the psychoactive compound tetrahydrocannabinol (THC), as measured in dried flower tops.3

Marijuana (Cannabis Sativa)

This cannabis sativa is cultivated to maximize the THC content, which is focused in the United States, and used exclusively for recreational and medicinal purposes.

How Hemp Helps The Body

Foods made from the plant are processed from the plant's seeds and are quite common. Common foods include granola, roasted seeds, milk, and butter. These foods do not appear on drug tests when consumed.

 

The European strain offers a variety of health benefits without the side effects of the THC.

Protein

Powder is made from the oil the of the seeds and then processed into powder. The result is a complete protein that contains all nine essential amino acids plus omega fatty acids and fiber4. When compared to whey or animal protein, hemp powder is low in lysine and leucine.

Can't Stand Fish?

For essential fatty acids, seeds are rich in healthy fats, which include omega-3,6, and 9 fatty acids. It also contains linoleic acid, and gamma-linolenic acid (GLA).5

Health Benefits Of Phytocannabinoids

The stalk of the plant contains natural compounds called phytocannabinoids. When eaten, they interact with the body's endocannabinoid system (ECS) and help with stress, as well as, relieve aches, pains, and discomfort. Phytocannabinoids also support brain, bone, digestive health, and promote immune and metabolic function.

 

The plant contains over 80 different phytocannabinoids that help supplement the cannabinoids in your body makes naturally and support the ECS.6 Legally stalk extracts that are imported from outside of the United States must have less than 0.3% THC. 

Legality

Since 1970, cultivation of cannabis sativa from both the hemp and marijuana plants have been illegal in the U.S. under the federal Controlled Substances Act. Even though some States have legalized marijuana and the federal Farm Bill of 2014 allows States to issue licenses for limited and experimental growth, federal law still prohibits the domestic cultivation, sale, and distribution.8

 

Hemp products such as, paper, rope, clothing, and bioplastics, have always been available in the United States. Federal law never banned the importation of these products, as long as, the THC content is less than or equal to 0.3 percent.8

 

Now with people interested in plant nutrition there is a larger availability of hemp-derived foods. These foods are made from sources outside of the U.S. These sources only contain a minimal amount of THC, and are completely legal.

When Buying Hemp Products

When buying a hemp products, make sure that it is made from imported industrial hemp. Buy brands that manufacture with Good Manufacturing Practice (GMP) standards and test their products purity and quality.

 

  • Food purchases should be from major brands and reputable sources. It's best to go with organic products, which do not contain pesticides.
  • Hemp oil products should be organic and cold processed. These oils should be refrigerated to avoid rancidity.
  • When buying hemp protein, find brands, which list amino acid content. There should be no additives, i.e. a lot of sugar.

Cannabidiol (CBD) & Phytocannabinoids

References

  1. http://www.ancient-origins.net/history/cannabis-journey-through-ages-003084. [Accessed March 19, 2018]
  2. http://hashmuseum.com/en/collection/columbus-and-cannabis. [Accessed March 19, 2018]
  3. Johnson R. Hemp as an agricultural commodity. Washington, D.C. Library of Congress Congressional Research Service, 2014.
  4. Callaway J. Hempseed as a nutritional resource: An overview. Euphytica 2004;140(1-2):65-72.
  5. Leizer C, Ribnicky D, Poulev A, et al. The composition of hemp seed oil and its potential as an important source of nutrition. J Nutraceut Func Med Foods 2002;2(4):35-53.
  6. Borgelt L, Franson K, Nussbaum A, Wang G. The pharmacologic and clinical effects of medical cannabis. Pharmacotherapy 2013;33(2):195-209.
  7. Cherney J, Small E. Industrial hemp in North America: production, politics and potential. Agronomy 2016;6(4):58.
  8. Mead A. The legal status of cannabis (marijuana) and cannabidiol (CBD) under U.S. law. Epilepsy Behav 2017;70(Pt B):149-153.
Dr. Alex Jimenez's insight:

Hemp is one of the oldest cultivated crops. Ancient civilizations used it for food and wove the strong and durable fibers into clothing rope. For Answers to any questions you may have please call Dr. Jimenez at 915-850-0900

No comment yet.
Scooped by Dr. Alex Jimenez
Scoop.it!

Cannabinoids And Plant Medicine

Cannabinoids And Plant Medicine | Diet and Supplements | Scoop.it

Cannabinoids: Plants and medicine have come around like never before. With more research taking place and more information coming to the medical field, there are now more options for ailments, conditions, diseases and disorders. Chiropractor, Dr. Alex Jimenez analyzes the data and brings insight to these developing medicines and treatments. How they can help patients, what can they do and what can't they do?

 

Most associate cannabinoids with the marijuana plant. This is the most recognized cannabinoid compound - tetrahydrocannabinol (THC), which is what causes feelings of euphoria.

 

However, scientists have identified cannabinoids in many plants, which include black pepper, broccoli, carrots, clove, echinacea, and ginseng. None of these will get you high. But with an understanding of how the cannabinoids in these various plants affect the human body can create a path to important health discoveries.

Plants Are Medicine

Many modern drugs were developed through plant research. Researching compounds in these plants led to discovering life saving drugs and furthered the knowledge of how the human body functions. An example is the foxglove plant, which gave us digoxin and digitoxin. Two very important heart medications.1

Humans have been especially resourceful when finding plants for pleasure or to decrease pain.

Caffeine provides energy, while nicotine from tobacco stimulates and relaxes. This explains why tobacco is still popular even though we know the health risks of smoking.2

Pain-Relieving Drugs & Their Origin

Aspirin

In ancient times, medical practitioners drank tea made from willow tree, in order to reduce fever and pain. It took hundreds of years for scientists to find and isolate the active compound, which is salicylic acid. This led to the discovery of aspirin and from there, it evolved into inflammation reduction.4

Anesthetics

Coca plant leaves were used by the Incan's in South America. It was used to treat headaches, wounds, and fractures. However, the coca plant also brought about cocaine. But is an effective anesthetic. To have an understanding of how cocaine blocks pain has created common anesthetics like lidocaine, which is used in dental procedures.5

Opiates

Scientists studying opium from the poppy plant, have discovered opiate receptors in the human body and how they manage pain. This led to morphine, codeine, and other opiate based medications.3

Human Health & Cannabis

Cannabis has been used for centuries. Chinese text from the year A.D. 1 has recorded the use of hemp in treating over 100 ailments, which date back to 2737 B.C.6 After this, the tops of the cannabis plant were cultivated for their psychoactive attributes. While this was happening a different strain of the plant was grown for industrial hemp use, in making clothing, paper, biofuels, foods, and other products. 

 

Based on the controversy surrounding marijuana, it has not been easy for researchers to study the effects of the non-THC components in cannabis. THC was identified in the 1940's, but it was not until 50 years later that research revealed humans (and almost all animals) have a system of cannabinoid receptors.

Humans make cannabinoids (endocannabinoids) and they act on these receptors.7

This system is called the endocannabinoid system (ECS). The ECS is involved in multiple processes, which include:

 

  • Pain Sensation
  • Appetite
  • Memory
  • Mood

 

Ever hit your toe, digest a piece of fruit or forget a password? Then the ECS was involved.

 

Discovery of the ECS along with the natural compounds identified in cannabis helped science and medicine. Researchers called these compounds phytocannabinoids, from the prefix “phyto" for plant. Over 80 phytocannabinoids have now been discovered in marijuana and hemp. THC is just one of the many compounds being studied for their health benefits.8

Cannabis & THC Moving Forward

Now that many plants are known to contain these compounds, phytocannabinoids are no longer just associated with cannabis.9 Chances are you have some source of phytocannabinoids in your diet right now.

Remember it could be just a small amount, and not all phytocannabinoids interact strongly with the ECS.

How Far Has This Research Developed?

Current research shows that some of the phytocannabinoids in hemp, clove, and black pepper can support the ECS to promote relaxation, decrease nerve discomfort, and improve digestive health. And as these compounds do not contain THC there is no mind-altering effects. Therefore, the option of using phytocannabinoids for health benefits, without feeling the psychoactive effects is definitely something to look forward to.10

References

  1. Gurib-Fakim A. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Aspects Med 2006;27(1):1-93.
  2. Singh Y, Blumenthal M. Kava: an overview. Distribution, mythology, botany, culture, chemistry and pharmacology of the South Pacific’s most revered herb. Herbalgram 1997;39(suppl):34-56.
  3. Brownstein M. A brief history of opiates, opioid peptides, and opioid receptors. Proc Natl Acad Sci U S A 1993;90(12):5391-5393.
  4. Vainio H, Gareth M. Aspirin for the second hundred years: new uses for an old drug. Pharmacol Toxicol 1997;81(4):151-152.
  5. Ruetsch Y, Thomas B, Alain B. From cocaine to ropivacaine: the history of local anesthetic drugs. Curr Top Med Chem 2001;1(3):175-182.
  6. http://www.thenorthwestleaf.com/pages/articles/post/traditional-chinese-medicine-how-marijuana-has-been-used-for-centuries [Accessed April 16, 2018].
  7. Pertwee R. Cannabinoid pharmacology: the first 66 years. Br J Pharmacol 2006;147(Supp 1):163-171.
  8. Borgelt L, Franson K, Nussbaum A, Wang G. The pharmacologic and clinical effects of medical cannabis. Pharmacotherapy 2013;33(2):195-209.
  9. Gertsch J, Roger G, Vincenzo D. Phytocannabinoids beyond the Cannabis plant – do they exist? Br J Pharmacol 2010;160(3):523-529.
  10. Russo E. Taming THC: potential cannabis synergy and phytocannabinoid?terpenoid entourage effects. Br J Pharmacol 2011;163(7):1344-1364.
Dr. Alex Jimenez's insight:

Cannabinoids: Plants and new medical research have created more treatment options for ailments, conditions, diseases and disorders. For Answers to any questions you may have please call Dr. Jimenez at 915-850-0900

good health's curator insight, January 15, 11:43 AM

Acquista Online La Prescrizione Di Perdita Di Peso
Crediamo che i farmaci a volte possano essere molto urgenti da assumere. Se hai urgente bisogno di farmaci, possiamo anche fornirti una consegna espressa,


https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ozempic-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-victoza-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mysimba-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-wegovy-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-phentermine-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adipex-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vyvanse-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-percocet-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-stilnox-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-subutex-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-metadone/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-botox-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adma-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ativan-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-demerol-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-depalgo-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-diazepam-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-endocet-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-opana-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vicodin-online/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/
https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/

https://globalefarmacia.com/Prodotto/acquista-ozempic-online/
https://globalefarmacia.com/Prodotto/acquista-victoza-online/
https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/
https://globalefarmacia.com/Prodotto/acquista-mysimba-online/
https://globalefarmacia.com/Prodotto/acquista-wegovy-online/
https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/
https://globalefarmacia.com/Prodotto/acquista-phentermine-online/
https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/
https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/
https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/
https://globalefarmacia.com/Prodotto/acquista-adipex-online/
https://globalefarmacia.com/Prodotto/acquista-vyvanse-online/
https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/
https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/
https://globalefarmacia.com/Prodotto/acquista-percocet-online/
https://globalefarmacia.com/Prodotto/acquista-stilnox-online/
https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/
https://globalefarmacia.com/Prodotto/acquista-subutex-online/
https://globalefarmacia.com/Prodotto/acquista-metadone/
https://globalefarmacia.com/Prodotto/acquista-botox-online/
https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/
https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/
https://globalefarmacia.com/Prodotto/acquista-adma-online/
https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/
https://globalefarmacia.com/Prodotto/acquista-ativan-online/
https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/
https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/
https://globalefarmacia.com/Prodotto/acquista-codeina-online/
https://globalefarmacia.com/Prodotto/acquista-demerol-online/
https://globalefarmacia.com/Prodotto/acquista-depalgo-online/
https://globalefarmacia.com/Prodotto/acquista-diazepam-online/
https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/
https://globalefarmacia.com/Prodotto/acquista-endocet-online/
https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/
https://globalefarmacia.com/Prodotto/acquista-opana-online/
https://globalefarmacia.com/Prodotto/acquista-vicodin-online/
https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/
https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/
https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/
https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/


<a href="https://globalefarmacia.com/Prodotto/acquista-ozempic-online/">acquista-ozempic-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-victoza-online/">acquista-victoza-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/">acquista-mounjaro-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-mysimba-online/">acquista-mysimba-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-wegovy-online/">acquista-wegovy-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/">acquistare-saxenda-6mg-ml-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-phentermine-online/">acquista-phentermine-online</a>;
<a href="https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/">ephedrine-hcl-30mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/">acquista-ossicodone-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/">acquista-oxycontin-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-percocet-online/">acquista-percocet-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-stilnox-online/">acquista-stilnox-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/">acquista-suboxone-8mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-subutex-online/">acquista-subutex-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-metadone/">acquista-metadone</a>;
<a href="https://globalefarmacia.com/Prodotto/buy-vyvanse-online/">buy-vyvanse-online</a>;
<a href="https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/">a-215-ossicodone-actavis</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/">acquista-adderall-30mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-adipex-online/">acquista-adipex-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-adma-online/">acquista-adma-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-ativan-online/">acquista-ativan-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-botox-online/">acquista-botox-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/">acquista-cerotti-al-fentanil</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/">acquista-codeina-linctus-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-codeina-online/">ta-codeina-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-demerol-online/">acquista-demerol-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-depalgo-online/">acquista-depalgo-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-diazepam-online/">acquista-diazepam-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/">acquista-dilaudid-8mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-endocet-online/">acquista-endocet-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/">acquista-eroina-bianca</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/">acquista-l-ritalin-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-opana-online/">acquista-opana-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-vicodin-online/">acquista-vicodin-online</a>;
<a href="https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/">acquista-xanax-2mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/">acquistare-rohypnol-2mg</a>;
<a href="https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/">acquistare-sibutramina-online</a>;
<a href="https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/">efedrina-hcl-in-polvere</a>;
<a href="https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/">sciroppo-di-metadone</a>;
<a href="https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/">tramadolo-hcl-200mg</a>;

 


<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ozempic-online/&quot; rel="dofollow">acquista-ozempic-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-victoza-online/&quot; rel="dofollow">acquista-victoza-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/&quot; rel="dofollow">acquista-mounjaro-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mysimba-online/&quot; rel="dofollow">acquista-mysimba-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-wegovy-online/&quot; rel="dofollow">acquista-wegovy-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/&quot; rel="dofollow">acquistare-saxenda-6mg-ml-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-phentermine-online/&quot; rel="dofollow">acquista-phentermine-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/&quot; rel="dofollow">acquistare-sibutramina-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/&quot; rel="dofollow">ephedrine-hcl-30mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/&quot; rel="dofollow">acquista-adderall-30mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adipex-online/&quot; rel="dofollow">acquista-adipex-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vyvanse-online/&quot; rel="dofollow">acquista-vyvanse-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/&quot; rel="dofollow">acquista-ossicodone-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/&quot; rel="dofollow">acquista-oxycontin-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-percocet-online/&quot; rel="dofollow">acquista-percocet-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-stilnox-online/&quot; rel="dofollow">acquista-stilnox-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/&quot; rel="dofollow">acquista-suboxone-8mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-subutex-online/&quot; rel="dofollow">acquista-subutex-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-metadone/&quot; rel="dofollow">acquista-metadone</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-botox-online/&quot; rel="dofollow">acquista-botox-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/&quot; rel="dofollow">acquistare-rohypnol-2mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/&quot; rel="dofollow">acquistare-rohypnol-2mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adma-online/&quot; rel="dofollow">acquista-adma-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/&quot; rel="dofollow">a-215-ossicodone-actavis</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ativan-online/&quot; rel="dofollow">acquista-ativan-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/&quot; rel="dofollow">acquista-cerotti-al-fentanil</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/&quot; rel="dofollow">acquista-codeina-linctus-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-online/&quot; rel="dofollow">acquista-codeina-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-demerol-online/&quot; rel="dofollow">acquista-demerol-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-depalgo-online/&quot; rel="dofollow">acquista-depalgo-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-diazepam-online/&quot; rel="dofollow">acquista-diazepam-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/&quot; rel="dofollow">acquista-dilaudid-8mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-endocet-online/&quot; rel="dofollow">acquista-endocet-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/&quot; rel="dofollow">acquista-eroina-bianca</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-opana-online/&quot; rel="dofollow">acquista-opana-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vicodin-online/&quot; rel="dofollow">acquista-vicodin-online</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/&quot; rel="dofollow">acquista-xanax-2mg</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/&quot; rel="dofollow">efedrina-hcl-in-polvere</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/&quot; rel="dofollow">sciroppo-di-metadone</a>
<a href="https://www.google.it/url?q=https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/&quot; rel="dofollow">tramadolo-hcl-200mg</a>

https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ozempic-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-victoza-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mysimba-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-wegovy-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-phentermine-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adipex-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vyvanse-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-percocet-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-stilnox-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-subutex-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-metadone/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-botox-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adma-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ativan-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-demerol-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-depalgo-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-diazepam-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-endocet-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-opana-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vicodin-online/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/
https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/


<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ozempic-online/&quot; rel="dofollow">acquista-ozempic-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-victoza-online/&quot; rel="dofollow">acquista-victoza-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mounjaro-online/&quot; rel="dofollow">acquista-mounjaro-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-mysimba-online/&quot; rel="dofollow">acquista-mysimba-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-wegovy-online/&quot; rel="dofollow">acquista-wegovy-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-saxenda-6mg-ml-online/&quot; rel="dofollow">acquistare-saxenda-6mg-ml-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-phentermine-online/&quot; rel="dofollow">acquista-phentermine-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-sibutramina-online/&quot; rel="dofollow">acquistare-sibutramina-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/ephedrine-hcl-30mg/&quot; rel="dofollow">ephedrine-hcl-30mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adderall-30mg/&quot; rel="dofollow">acquista-adderall-30mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adipex-online/&quot; rel="dofollow">acquista-adipex-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vyvanse-online/&quot; rel="dofollow">acquista-vyvanse-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ossicodone-online/&quot; rel="dofollow">acquista-ossicodone-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-oxycontin-online/&quot; rel="dofollow">acquista-oxycontin-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-percocet-online/&quot; rel="dofollow">acquista-percocet-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-stilnox-online/&quot; rel="dofollow">acquista-stilnox-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-suboxone-8mg/&quot; rel="dofollow">acquista-suboxone-8mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-subutex-online/&quot; rel="dofollow">acquista-subutex-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-metadone/&quot; rel="dofollow">acquista-metadone</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-botox-online/&quot; rel="dofollow">acquista-botox-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquistare-rohypnol-2mg/&quot; rel="dofollow">acquistare-rohypnol-2mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-l-ritalin-online/&quot; rel="dofollow">acquistare-rohypnol-2mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-adma-online/&quot; rel="dofollow">acquista-adma-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/a-215-ossicodone-actavis/&quot; rel="dofollow">a-215-ossicodone-actavis</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-ativan-online/&quot; rel="dofollow">acquista-ativan-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-cerotti-al-fentanil/&quot; rel="dofollow">acquista-cerotti-al-fentanil</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-linctus-online/&quot; rel="dofollow">acquista-codeina-linctus-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-codeina-online/&quot; rel="dofollow">acquista-codeina-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-demerol-online/&quot; rel="dofollow">acquista-demerol-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-depalgo-online/&quot; rel="dofollow">acquista-depalgo-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-diazepam-online/&quot; rel="dofollow">acquista-diazepam-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-dilaudid-8mg/&quot; rel="dofollow">acquista-dilaudid-8mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-endocet-online/&quot; rel="dofollow">acquista-endocet-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-eroina-bianca/&quot; rel="dofollow">acquista-eroina-bianca</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-opana-online/&quot; rel="dofollow">acquista-opana-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-vicodin-online/&quot; rel="dofollow">acquista-vicodin-online</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/acquista-xanax-2mg/&quot; rel="dofollow">acquista-xanax-2mg</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/efedrina-hcl-in-polvere/&quot; rel="dofollow">efedrina-hcl-in-polvere</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/sciroppo-di-metadone/&quot; rel="dofollow">sciroppo-di-metadone</a>
<a href="https://www.bing.it/url?q=https://globalefarmacia.com/Prodotto/tramadolo-hcl-200mg/&quot; rel="dofollow">tramadolo-hcl-200mg</a>

Scooped by Dr. Alex Jimenez
Scoop.it!

Can A Gluten Free Diet Relieve Joint Pain? | Dr. Alex Jimenez D.C.

Can A Gluten Free Diet Relieve Joint Pain? | Dr. Alex Jimenez D.C. | Diet and Supplements | Scoop.it

Gluten Free: During a visit to my orthopedist I made a confession: “I stopped eating gluten and—this might sound a little crazy, but—a lot of my joint pain disappeared.

 

She smiled broadly and said, “You’re not the first person to say that.”

 

See How Gluten Can Cause Joint Pain

 

Giving up gluten may be difficult, but it could lead to less joint pain.  Learn more: What Are Anti-Inflammatory Foods?[

 

I stopped eating gluten because couple of friends suggested it might relieve some unexplained symptoms I was experiencing, like fatigue and mild joint pain. I had strong doubts, but my primary care doctor and I had run out of ideas (I was waiting to see a specialist), so I figured I had nothing to lose.

 

See Rheumatoid Arthritis and Fatigue

 

Within a week of going on a gluten-free diet, my fatigue, joint pain, and many other symptoms disappeared.

The Connection Between Gluten & Joint Pain

It turns out, researchers have long known that people with autoimmune forms of arthritis, such as rheumatoid 

arthritis and psoriatic arthritis, are at higher risk for celiac disease,1, 2 an autoimmune disorder triggered by gluten.

 

See Inflammatory Arthritis

 

More recently, medical experts have begun to acknowledge the connection between gluten and joint pain described as non-pathologic (unrelated to disease).

 

Both my orthopedist and primary care provider agree that my gluten-free diet is probably keeping my joint pain and other symptoms of inflammation in check.

 

See An Anti-Inflammatory Diet for Arthritis 

Wait, Don’t Go Gluten Free Yet…

Before you throw away your pasta and cereal in search of joint pain relief, consider these factors:

 

  • Going gluten free isn’t for everyone. 
    Whole grains are a recommended part of a healthy diet. No research suggests everyone should start eating a gluten free diet. But for people experiencing painful joint inflammation, eliminating gluten and other “pro-inflammatory” foods may be one treatment approach to consider.

 

See The Ins and Outs of an Anti-Inflammatory Diet

 

  • Food products labeled “gluten free” aren’t necessarily healthy. 
    It’s almost always better to eat whole foods as opposed to processed foods that are gluten-free, but still full of sugar or saturated fats. For example, skip the gluten-free sugar cereal and make yourself a bowl of gluten-free oatmeal or a fruit smoothie for breakfast.
  • Eating a gluten-free diet isn’t a magic bullet. 
    Adopting other healthy habits, such as making time for exercise, is essential to eliminating joint pain.

 

See Managing RA Fatigue Through Diet and Exercise

 

  • A health professional can help.It’s always a good idea to tell yourdoctor about lifestyle changes, including achange in diet. A doctor may refer you to a registered dietician who can recommend certain foods, helping ensure you get enough nutrients and fiber in your gluten-free diet.

 

See Arthritis Treatment Specialists

 

  • You might experience gluten withdrawal.Many people report that their inflammatory symptoms initially got worse after starting their gluten free diet. This withdrawal stage can last days or even weeks, so you may not want to go gluten free right before a big event, like a vacation, holiday, or the start of a newjob.

 

No single treatment or lifestyle habit can eliminate the symptoms of arthritis, but going gluten-free may be an option worth trying as part of your overall treatment plan.

 

By Jennifer Flynn

Learn More

Turmeric and Curcumin for Arthritis

 

Dietary Supplements for Treating Arthritis

 

References

  1. Rath, L. The Connection Between Gluten and Arthritis. The Arthritis Foundation. http://www.arthritis.org/living-with-arthritis/arthritis-diet/anti-infla...Accessed August 20, 2015.
  2. Barton SH, Murray JA. Celiac disease and autoimmunity in the gut and elsewhere. Gastroenterol Clin North Am. 2008;37(2):411-28, vii.
Dr. Alex Jimenez's insight:

El Paso, TX No single treatment or lifestyle habit can eliminate the symptoms of arthritis, but gluten free may be an option worth trying. For Answers to any questions you may have please call Dr. Jimenez at 915-850-0900

No comment yet.
Scooped by Dr. Alex Jimenez
Scoop.it!

Turmeric Root Side Effects | El Paso, TX Chiropractor

Turmeric Root Side Effects | El Paso, TX Chiropractor | Diet and Supplements | Scoop.it

Turmeric: Let us ease your mind a bit. As with any dietary supplement, there are right ways to take turmeric root that could best benefit your health. We review things to keep in mind to limit any potential side effects. 

Potential Benefits Of Turmeric Root 

The compound that gives turmeric root its signature bright yellow hue is also the compound that packs the potential health benefits punch: curcumin. Curcumin – and therefore turmeric root – is believed to provide some pretty attractive health benefits, including support of joint and muscle comfort, promotion of healthy aging of the brain, support of a healthy digestive tract, and maintenance of healthy cholesterol levels already in the normal range.

 

But that doesn’t mean that taking 10 turmeric root supplement capsules at once would give you 10 times the potential benefit. Quite the opposite. There are right – and wrong – ways to consume the supplement in an effort to reduce possible side effects.

Avoiding Turmeric Root Side Effects

According to MentalHealthDaily.com, if you’re supplementing with turmeric root, especially at high doses, it is possible that you may encounter some unwanted side effects at one point or another. The two most common side effects associated are diarrhea and nausea. High on the list of possible side effects are also:

 

  • Thinning of the blood. Some research shows that curcumin may have anticoagulant effects which can slow blood clotting. If you’re already taking a blood thinner, speak to your doctor about your desire to add a turmeric root supplement, and discontinue use at least two weeks before any surgery.
  • Some estimates indicate that one in four turmeric root users will notice an increase in bloating and passing gas. To reduce the likelihood of experiencing this particular side effect, consider a dose less than 6 grams per day, and avoid taking your supplement on an empty stomach.
  • Low blood sugar. Especially in those with health concerns related to blood glucose, turmeric root supplements may yield this unwanted effect. Some experts believe that the curcumin may even act to amplify pre-existing blood sugar issues.

 

Less common side effects may also include facial flushing, fever, headaches, skin rash and even low testosterone.

 

But as with any supplement or medication, remember that the severity and number of side effects you experience is likely subject to a variety of causes and factors. Keep in mind that some individuals may not experience any side effects at all.

Recommendations And Dosages

As with all medications and supplements, we encourage you to consult with your healthcare professional before adding a turmeric root supplement to your regimen. He or she can personalize dosing recommendations for you based on your desired outcomes and other factors – like other medications and supplements you are taking. That said, WebMD.com offers a few general guidelines for using turmeric and avoiding possible side effects:

 

  • This root is likely safe when applied to the skin appropriately for up to eight months.
  • It should only be considered as a mouthwash for short-term use.
  • For high cholesterol levels: 1.4 grams of turmeric extract in two divided doses each day for three months has been used for those 15 years or older.

Let’s Get Technical

While there are still many studies to be done and results to be reported, BCM-95 – a highly-absorbent form of curcumin, which is the active ingredient in turmeric root – has been clinically proven to help temporarily relieve minor pain. When used at a dosage of 2 grams per day, volunteers participated in the study without any mild adverse reactions. To try BCM-95 out for yourself, we recommend CuraMed and other daily supplements from Terry Naturally. And as always, we’re proud to provide you with free shipping anywhere in the U.S.

 

by Theresa Groskopp, CN in Health ChallengesHealth TipsNutrition Supplements

 

 

Dr. Alex Jimenez's insight:

Dietary supplements, there are right ways to take turmeric that could best benefit your health & to limit any turmeric root side effects. For Answers to any questions you may have please call Dr. Jimenez at 915-850-0900

No comment yet.
Scooped by Dr. Alex Jimenez
Scoop.it!

Nutrition's Role In Performance Enhancement And Post Exercise Recovery

Nutrition's Role In Performance Enhancement And Post Exercise Recovery | Diet and Supplements | Scoop.it
Nutrition Abstract: A number of factors contribute to success in sport, and diet is a key component. An athlete’s dietary requirements depend on several aspects, including the sport, the athlete’s goals, the environment, and practical issues. The importance of individualized dietary advice has been increasingly recognized, including day-to-day dietary advice and specific advice before, during, and after training and/or competition. Athletes use a range of dietary strategies to improve performance, with maximizing glycogen stores a key strategy for many. Carbohydrate intake during exercise maintains high levels of carbohydrate oxidation, prevents hypoglycemia, and has a positive effect on the central nervous system. Recent research has focused on athletes training with low carbohydrate availability to enhance metabolic adaptations, but whether this leads to an improvement in performance is unclear. The benefits of protein intake throughout the day following exercise are now well recognized. Athletes should aim to maintain adequate levels of hydration, and they should minimize fluid losses during exercise to no more than 2% of their body weight. Supplement use is widespread in athletes, with recent interest in the beneficial effects of nitrate, beta-alanine, and vitamin D on performance. However, an unregulated supplement industry and inadvertent contamination of supplements with banned substances increases the risk of a positive doping result. Although the availability of nutrition information for athletes varies, athletes will bene t from the advice of a registered dietician or nutritionist.
 

Keywords: nutrition, diet, sport, athlete, supplements, hydration

Introduction To The Importance & Influence Of Nutrition On Exercise

Nutrition is increasingly recognized as a key component of optimal sporting performance, with both the science and practice of sports nutrition developing rapidly.1 Recent studies have found that a planned scientific nutritional strategy (consisting of fluid, carbohydrate, sodium, and caffeine) compared with a self-chosen nutritional strategy helped non-elite runners complete a marathon run faster2 and trained cyclists complete a time trial faster.3 Whereas training has the greatest potential to increase performance, it has been estimated that consumption of a carbohydrate–electrolyte drink or relatively low doses of caffeine may improve a 40 km cycling time trial performance by 32–42 and 55–84 seconds, respectively.4

 

Evidence supports a range of dietary strategies in enhancing sports performance. It is likely that combining several strategies will be of greater bene t than one strategy in isolation.5 Dietary strategies to enhance performance include optimizing intakes of macronutrients, micronutrients, and fluids, including their composition and spacing throughout the day. The importance of individualized or personalized dietary advice is becoming increasingly recognized,6 with dietary strategies varying according to the individual athlete’s sport, personal goals, and practicalities (eg, food preferences). “Athlete” includes individuals competing in a range of sport types, such as strength and power (eg, weight-lifting), team (eg, football), and endurance (eg, marathon running). The use of dietary supplements can enhance performance, provided these are used appropriately. This manuscript provides an overview of dietary strategies used by athletes, the efficacy of these strategies, availability of nutrition information to athletes, and risks associated with dietary supplement intake.

Review Of Diet Strategies Employed By Athletes

Maximizing Muscle Glycogen Stores Prior To Exercise

 

Carbohydrate loading aims to maximize an athlete’s muscle glycogen stores prior to endurance exercise lasting longer than 90 minutes. Benefits include delayed onset of fatigue (approximately 20%) and improvement in performance of 2%–3%.7 Initial protocols involved a depletion phase (3 days of intense training and low carbohydrate intake) followed by a loading phase (3 days of reduced training and high carbo- hydrate intake).8,9 Further research showed muscle glycogen concentrations could be enhanced to a similar level without the glycogen-depletion phase,10 and more recently, that 24 hours may be sufficient to maximize glycogen stores.11,12 Current recommendations suggest that for sustained or intermittent exercise longer than 90 minutes, athletes should consume 10–12 g of carbohydrate per kg of body mass (BM) per day in the 36–48 hours prior to exercise.13

 

There appears to be no advantage to increasing pre- exercise muscle glycogen content for moderate-intensity cycling or running of 60–90 minutes, as significant levels of glycogen remain in the muscle following exercise.7 For exercise shorter than 90 minutes, 7–12 g of carbohydrate/kg of BM should be consumed during the 24 hours preceding.13 Some14,15 but not all16 studies have shown enhanced performance of intermittent high-intensity exercise of 60–90 minutes with carbohydrate loading.

 

Carbohydrate eaten in the hours prior to exercise (com- pared with an overnight fast) has been shown to increase muscle glycogen stores and carbohydrate oxidation,17 extend cycle time to exhaustion,5 and improve exercise performance.5,18 Specific recommendations for exercise of longer than 60 minutes include 1–4 g of carbohydrate/kg of BM in the 1–4 hours prior.13 Most studies have not found improvements in performance from consuming low glycemic index (GI) foods prior to exercise.19 Any metabolic or performance effects from low GI foods appear to be attenuated when carbohydrate is consumed during exercise.20,21

Carbohydrate Intake During The Event

Carbohydrate ingestion has been shown to improve performance in events lasting approximately 1 hour.6 A growing body of evidence also demonstrates beneficial effects of a carbohydrate mouth rinse on performance.22 It is thought that receptors in the oral cavity signal to the central nervous system to positively modify motor output.23

 

In longer events, carbohydrate improves performance primarily by preventing hypoglycemia and maintaining high levels of carbohydrate oxidation.6 The rate of exogenous carbohydrate oxidation is limited by the small intestine’s ability to absorb carbohydrate.6 Glucose is absorbed by the sodium- dependent transporter (SGLT1), which becomes saturated with an intake of approximately 1 g/minute. The simultaneous ingestion of fructose (absorbed via glucose transporter 5 [GLUT5]), enables oxidation rates of approximately 1.3 g/minute,24 with performance benefits apparent in the third hour of exercise.6 Recommendations reflect this, with 90 g of carbohydrate from multiple sources recommended for events longer than 2.5 hours, and 60 g of carbohydrate from either single or multiple sources recommended for exercise of 2–3 hours’ duration (Table 1). For slower athletes exercising at a lower intensity, carbohydrate requirements will be less due to lower carbohydrate oxidation.6 Daily training with high carbohydrate availability has been shown to increase exogenous carbohydrate oxidation rates.25

The “Train-Low, Compete-High” Approach

The “train-low, compete-high” concept is training with low carbohydrate availability to promote adaptations such as enhanced activation of cell-signaling pathways, increased mitochondrial enzyme content and activity, enhanced lipid oxidation rates, and hence improved exercise capacity.26 However, there is no clear evidence that performance is improved with this approach.27 For example, when highly trained cyclists were separated into once-daily (train-high) or twice-daily (train-low) training sessions, increases in resting muscle glycogen content were seen in the low-carbohydrate- availability group, along with other selected training adaptations.28 However, performance in a 1-hour time trial after 3 weeks of training was no different between groups. Other research has produced similar results.29 Different strategies have been suggested (eg, training after an overnight fast, training twice per day, restricting carbohydrate during recovery),26 but further research is needed to establish optimal dietary periodization plans.27

Fat As A Fuel During Endurance Exercise

There has been a recent resurgence of interest in fat as a fuel, particularly for ultra endurance exercise. A high-carbohydrate strategy inhibits fat utilization during exercise,30 which may not be beneficial due to the abundance of energy stored in the body as fat. Creating an environment that optimizes fat oxidation potentially occurs when dietary carbohydrate is reduced to a level that promotes ketosis.31 However, this strategy may impair performance of high-intensity activity, by contributing to a reduction in pyruvate dehydrogenase activity and glycogenolysis. 32 The lack of performance benefits seen in studies investigating “high-fat” diets may be attributed to inadequate carbohydrate restriction and time for adaptation.31 Research into the performance effects of high fat diets continues.

Nutrition: Protein

While protein consumption prior to and during endurance and resistance exercise has been shown to enhance rates of muscle protein synthesis (MPS), a recent review found protein ingestion alongside carbohydrate during exercise does not improve time–trial performance when compared with the ingestion of adequate amounts of carbohydrate alone.33 

Fluid And Electrolytes

The purpose of fluid consumption during exercise is primarily to maintain hydration and thermoregulation, thereby benefiting performance. Evidence is emerging on increased risk of oxidative stress with dehydration.34 Fluid consumption prior to exercise is recommended to ensure that the athlete is well-hydrated prior to commencing exercise.35 In addition, carefully planned hyperhydration ( fluid overloading) prior to an event may reset fluid balance and increase fluid retention, and consequently improve heat tolerance.36 However, fluid overloading may increase the risk of hyponatremia 37 and impact negatively on performance due to feelings of fullness and the need to urinate.

 

Hydration requirements are closely linked to sweat loss, which is highly variable (0.5–2.0 L/hour) and dependent on type and duration of exercise, ambient temperature, and athletes’ individual characteristics.35 Sodium losses linked to high temperature can be substantial, and in events of long duration or in hot temperatures, sodium must be replaced along with fluid to reduce risk of hyponatremia. 35

 

It has long been suggested that fluid losses greater than 2% of BM can impair performance,35 but there is controversy over the recommendation that athletes maintain BM by fluid ingestion throughout an event.37 Well-trained athletes who “drink to thirst” have been found to lose as much as 3.1% of BM with no impairment of performance in ultra-endurance events.38 Ambient temperature is important, and a review illustrated that exercise performance was preserved if loss was restricted to 1.8% and 3.2% of BM in hot and temperate conditions, respectively.39

Dietary Supplementation: Nitrates, Beta-Alanine & Vitamin D

Performance supplements shown to enhance performance include caffeine, beetroot juice, beta-alanine (BA), creatine, and bicarbonate.40 Comprehensive reviews on other supplements including caffeine, creatine, and bicarbonate can be found elsewhere.41 In recent years, research has focused on the role of nitrate, BA, and vitamin D and performance. Nitrate is most commonly provided as sodium nitrate or beetroot juice.42 Dietary nitrates are reduced (in mouth and stomach) to nitrites, and then to nitric oxide. During exercise, nitric oxide potentially influences skeletal muscle function through regulation of blood ow and glucose homeostasis, as well as mitochondrial respiration.43 During endurance exercise, nitrate supplementation has been shown to increase exercise efficiency (4%–5% reduction in VO at a steady attenuate oxidative stress.42 Similarly, a 4.2% improvement in performance was shown in a test designed to simulate a football game.44

 

BA is a precursor of carnosine, which is thought to have a number of performance-enhancing functions including the reduction of acidosis, regulation of calcium, and antioxidant properties.45 Supplementation with BA has been shown to 2 state; 0.9% improvement in time trials), reduce fatigue, and augment intracellular carnosine concentration.45 A systematic review concluded that BA may increase power output and working capacity and decrease feelings of fatigue, but that there are still questions about safety. The authors suggest caution in the use of BA as an ergogenic aid.46

 

Vitamin D is essential for the maintenance of bone health and control of calcium homeostasis, but is also important for muscle strength,47,48 regulation of the immune system,49 and cardiovascular health.50 Thus inadequate vitamin D status has potential implications for the overall health of athletes and performance. A recent review found that the vitamin D status of most athletes reflects that of the population in their locality, with lower levels in winter, and athletes who train predominantly indoors are at greater risk of deficiency.51 There are no dietary vitamin D recommendations for athletes; however, for muscle function, bone health, and avoidance of respiratory infections, current evidence supports maintenance of serum 25-hydroxy vitamin D (circulating form) concentrations of 80–100 nmol/L.51

Diets Specific For Post Exercise

Recovery from a bout of exercise is integral to the athlete’s training regimen. Without adequate recovery of carbohydrate, protein, fluids, and electrolytes, beneficial adaptations and performance may be hampered.

Muscle Glycogen Synthesis

Consuming carbohydrates immediately post exercise to coincide with the initial rapid phase of glycogen synthesis has been used as a strategy to maximize rates of muscle glycogen synthesis. An early study found delaying feeding by 2 hours after glycogen-depleting cycling exercise reduced glycogen synthesis rates.52 However the importance of this early enhanced rate of glycogen synthesis has been questioned in the context of extended recovery periods with sufficient carbohydrate consumption. Enhancing the rate of glycogen synthesis with immediate carbohydrate consumption after exercise appears most relevant when the next exercise session is within 8 hours of the first.53,54 Feeding frequency is also irrelevant with extended recovery; by 24 hours post exercise, consumption of carbohydrate as four large meals or 16 small snacks had comparable effects on muscle glycogen storage.55

 

With less than 8 hours between exercise sessions, it is recommended that for maximal glycogen synthesis, 1.0–1.2 g/kg/hour is consumed for the first 4 hours, followed by resumption of daily carbohydrate requirements.13 Additional protein has been shown to enhance glycogen synthesis rates when carbohydrate intake is suboptimal.56 The consumption of moderate to high GI foods post exercise is recommended;13 however, when either a high-GI or low-GI meal was consumed after glycogen-depleting exercise, no performance differences were seen in a 5 km cycling time trial 3 hours later.57

Muscle Protein Synthesis

An acute bout of intense endurance or resistance exercise can induce a transient increase in protein turnover, and, until feeding, protein balance remains negative. Protein consumption after exercise enhances MPS and net protein balance,58 predominantly by increasing mitochondrial protein fraction with endurance training, and myofibrillar protein fraction with resistance training.59

 

Only a few studies have investigated the effect of timing of protein intake post exercise. No significant difference in MPS was observed over 4 hours post exercise when a mixture of essential amino acids and sucrose was fed 1 hour versus 3 hours after resistance exercise.60 Conversely, when a protein and carbohydrate supplement was provided immediately versus 3 hours after cycling exercise, leg protein synthesis increased threefold over 3 hours.61 A meta-analysis found timed post exercise protein intake becomes less important with longer recovery periods and adequate protein intake,62 at least for resistance training.

 

Dose–response studies suggest approximately 20 g of high-quality protein is sufficient to maximize MPS at rest,63 following resistance,63,64 and after high-intensity aerobic exercise.65 Rate of MPS has been found to approximately triple 45–90 minutes after protein consumption at rest, and then return to baseline levels, even with continued availability of circulating essential amino acids (termed the “muscle full” effect).66 Since exercise-induced protein synthesis is elevated for 24–48 hours following resistance exercise67and 24–28 hours following high-intensity aerobic exercise,68 and feeding protein post exercise has an additive effect,58,64 then multiple feedings over the day post exercise might maximize muscle growth. In fact, feeding 20 g of whey protein every 3 hours was subsequently found to maximally stimulate muscle myofibrillar protein synthesis following resistance exercise.69,70

 

In resistance training, where post exercise intake of protein was balanced by protein intake later in the day, increased adaptation of muscle hypertrophy resulted in equivocal strength performance effects.71,72 Most studies have not found a subsequent bene t to aerobic performance with post exercise protein consumption.73,74 However, in two well controlled studies in which post exercise protein intake was balanced by protein intake later in the day, improvements were seen in cycling time to exhaustion75 and in cycling sprint performance.76

Fluids And Electrolyte Balance

Fluid and electrolyte replacement after exercise can be achieved through resuming normal hydration practices. However, when euhydration is needed within 24 hours or substantial body weight has been lost (.5% of BM), a more structured response may be warranted to replace fluids and electrolytes.77

Availability Of Nutritional Information To Athletes At Varying Levels

The availability of nutrition information for athletes varies. Younger or recreational athletes are more likely to receive generalized nutritional information of poorer quality from individuals such as coaches.78 Elite athletes are more likely to have access to specialized sports-nutrition input from qualified professionals. A range of sports science and medicine support systems are in place in different countries to assist elite athletes,1 and nutrition is a key component of these services. Some countries have nutrition programs embedded within sports institutes (eg, Australia) or alternatively have National Olympic Committees that support nutrition programs (eg, United States of America).1 However, not all athletes at the elite level have access to sports-nutrition services. This may be due to financial constraints of the sport, geographical issues, and a lack of recognition of the value of a sports-nutrition service.78

 

Athletes eat several times per day, with snacks contributing to energy requirements.79 Dietary intake differs across sports, with endurance athletes more likely to achieve energy and carbohydrate requirements compared to athletes in weight-conscious sports.79 A review found daily intakes of carbohydrate were 7.6 g/kg and 5.7 g/kg of BM for male and female endurance athletes, respectively.80 Ten elite Kenyan runners met macronutrient recommendations but not guide- lines for fluid intake.81 A review of fluid strategies showed a wide variability of intake across sports, with several factors influencing intake, many outside the athlete’s control.82

 

Nutrition information may be delivered to athletes by a range of people (dietitians, nutritionists, medical practitioners, sports scientists, coaches, trainers) and from a variety of sources (nutrition education programs, sporting magazines, the media and Internet).83 Of concern is the provision of nutrition advice from outside various professional’s scope of practice. For example, in Australia 88% of registered exercise professionals provided nutrition advice, despite many not having adequate nutrition training.84 A study of Canadian high-performance athletes from 34 sports found physicians ranked eighth and dietitians, 16th as choice of source of dietary supplement information.85

Risks Of Contravening The Doping Regulations

Supplement use is widespread in athletes.86,87 For example, 87.5% of elite athletes in Australia used dietary supplements88 and 87% of Canadian high-performance athletes took dietary supplements within the past 6 months85 (Table 2). It is difficult to compare studies due to differences in the criteria used to define dietary supplements, variations in assessing supplement intake, and disparities in the populations studied.85

 

Athletes take supplements for many reasons, including for proposed performance benefits, for prevention or treatment of a nutrient deficiency, for convenience, or due to fear of “missing out” by not taking a particular supplement.41

 

The potential benefits (eg, improved performance) of taking a dietary supplement must outweigh the risks.86,87 There are few permitted dietary supplements available that have an ergogenic effect.87,89 Dietary supplementation cannot compensate for poor food choices.87 Other concerns include lack of efficacy, safety issues (toxicity, medical concerns), negative nutrient interactions, unpleasant side effects, ethical issues, financial expense, and lack of quality control.41,86,87 Of major concern, is the consumption of prohibited substances by the World Anti-Doping Agency (WADA).

 

Inadequate regulation in the supplement industry (com- pounded by widespread Internet sales) makes it difficult for athletes to choose supplements wisely.41,86,87 In 2000–2001, a study of 634 different supplements from 13 countries found that 94 (14.8%) contained undeclared steroids, banned by WADA.90 Many contaminated supplements were routinely used by athletes (eg, vitamin and mineral supplements).86 Several studies have confirmed these findings. 41,86,89

 

A positive drug test in an athlete can occur with even a minute quantity of a banned substance.41,87 WADA maintains a “strict liability” policy, whereby every athlete is responsible for any substance found in their body regardless of how it got there.41,86,87,89 The World Anti-Doping Code (January 1, 2015) does recognize the issue of contaminated supplements.91 Whereas the code upholds the principle of strict liability, athletes may receive a lesser ban if they can  show “no significant fault” to demonstrate they did not intend to cheat. The updated code imposes longer bans on those who cheat intentionally, includes athlete support personnel (eg, coaches, medical staff), and has an increased focus on anti-doping education.91,99

 

In an effort to educate athletes about sports-supplement use, the Australian Institute of Sport’s sports-supplement program categorizes supplements according to evidence of efficacy in performance and risk of doping outcome.40 Category A supplements have sound evidence for use and include sports foods, medical supplements, and performance supplements. Category D supplements should not be used by athletes, as they are banned or are at high risk for contamination. These include stimulants, pro-hormones and hormone boosters, growth hormone releasers, peptides, glycerol, and colostrum.40

Conclusion

Athletes are always looking for an edge to improve their performance, and there are a range of dietary strategies available. Nonetheless, dietary recommendations should be individualized for each athlete and their sport and provided by an appropriately qualified professional to ensure optimal performance. Dietary supplements should be used with caution and as part of an overall nutrition and performance plan.

Disclosure

The authors report no conflicts of interest in this work.

 

Kathryn L Beck1 Jasmine S Thomson2 Richard J Swift1 Pamela R von Hurst1

 

1School of Food and Nutrition, Massey institute of Food Science and Technology, College of Health, Massey University Albany, Auckland, 2School of Food and Nutrition, Massey institute of Food Science and Technology, College of Health, Massey University Manawatu, Palmerston North, New Zealand

 

References:

 

1. Burke LM, Meyer NL, Pearce J. National nutritional programs for the
2012 London Olympic Games: A systematic approach by three different
countries. In: van Loon LJC, Meeusen R, editors. Limits of Human
Endurance. Nestle Nutrition Institute Workshop Series, volume 76.
Vevey, Switzerland: Nestec Ltd; 2013:103–120.
2. Hansen EA, Emanuelsen A, Gertsen RM, Sørensen SSR. Improved
marathon performance by in-race nutritional strategy intervention.
Int J Sport Nutr Exerc Metab. 2014;24(6):645–655.
3. Hottenrott K, Hass E, Kraus M, Neumann G, Steiner M, Knechtle B.
A scientific nutrition strategy improves time trial performance by ≈6%
when compared with a self-chosen nutrition strategy in trained cyclists:
a randomized cross-over study. Appl Physiol Nutr Metab. 2012;
37(4):637–645.
4. Jeukendrup AE, Martin J. Improving cycling performance: how should
we spend our time and money. Sports Med. 2001;31(7):559–569.
5. Wright DA, Sherman WM, Dernbach AR. Carbohydrate feedings
before, during, or in combination improve cycling endurance
performance. J Appl Physiol (1985). 1991;71(3):1082–1088.
6. Jeukendrup A. A step towards personalized sports nutrition: carbohydrate
intake during exercise. Sports Med. 2014;44 Suppl 1:
S25–S33.
7. Hawley JA, Schabort EJ, Noakes TD, Dennis SC. Carbohydrateloading
and exercise performance. An update. Sports Med. 1997;24(2):
73–81.
8. Bergström J, Hermansen L, Hultman E, Saltin B. Diet, muscle glycogen
and physical performance. Acta Physiol Scand. 1967;71(2):140–150.
9. Karlsson J, Saltin B. Diet, muscle glycogen, and endurance performance.
J Appl Physiol. 1971;31(2):203–206.
10. Sherman WM, Costill DL, Fink WJ, Miller JM. Effect of exercise-diet
manipulation on muscle glycogen and its subsequent utilization during
performance. Int J Sports Med. 1981;2(2):114–118.
11. Bussau VA, Fairchild TJ, Rao A, Steele P, Fournier PA. Carbohydrate
loading in human muscle: an improved 1 day protocol. Eur J Appl
Physiol. 2002;87(3):290–295.
12. Fairchild TJ, Fletcher S, Steele P, Goodman C, Dawson B, Fournier PA.
Rapid carbohydrate loading after a short bout of near maximal-intensity
exercise. Med Sci Sports Exerc. 2002;34(6):980–986.
13. Burke LM, Hawley JA, Wong SH, Jeukendrup AE. Carbohydrates for
training and competition. J Sports Sci. 2011;29 Suppl 1:S17–S27.
14. Raman A, Macdermid PW, Mündel T, Mann M, Stannard SR. The
effects of carbohydrate loading 48 hours before a simulated squash
match. Int J Sport Nutr Exerc Metab. 2014;24(2):157–165.
15. Balsom PD, Wood K, Olsson P, Ekblom B. Carbohydrate intake and
multiple sprint sports: with special reference to football (soccer). Int J
Sports Med. 1999;20(1):48–52.
16. Abt G, Zhou S, Weatherby R. The effect of a high-carbohydrate diet
on the skill performance of midfield soccer players after intermittent
treadmill exercise. J Sci Med Sport. 1998;1(4):203–212.
17. Coyle EF, Coggan AR, Hemmert MK, Lowe RC, Walters TJ. Substrate
usage during prolonged exercise following a preexercise meal. J Appl
Physiol (1985). 1985;59(2):429–433.
18. Neufer PD, Costill DL, Flynn MG, Kirwan JP, Mitchell JB, Houmard J.
Improvements in exercise performance: effects of carbohydrate feedings
and diet. J Appl Physiol (1985). 1987;62(3):983–988.
19. Burke LM, Collier GR, Hargreaves M. Glycemic index – a new tool
in sport nutrition? Int J Sport Nutr. 1998;8(4):401–415.
20. Burke LM, Claassen A, Hawley JA, Noakes TD. Carbohydrate intake
during prolonged cycling minimizes effect of glycemic index of preexercise
meal. J Appl Physiol (1985). 1998;85(6):2220–2226.
21. Wong SH, Chan OW, Chen YJ, Hu HL, Lam CW, Chung PK. Effect of
preexercise glycemic-index meal on running when CHO-electrolyte
solution is consumed during exercise. Int J Sport Nutr Exerc Metab.
2009;19(3):222–242.
22. Burke LM, Maughan RJ. The Governor has a sweet tooth – mouth
sensing of nutrients to enhance sports performance. Eur J Sport Sci.
2015;15(1):29–40.
23. Gant N, Stinear CM, Byblow WD. Carbohydrate in the mouth immediately
facilitates motor output. Brain Res. 2010;1350:151–158.
24. Jentjens RL, Moseley L, Waring RH, Harding LK, Jeukendrup AE.
Oxidation of combined ingestion of glucose and fructose during
exercise. J Appl Physiol (1985). 2004;96(4):1277–1284.
25. Cox GR, Clark SA, Cox AJ, et al. Daily training with high carbohydrate
availability increases exogenous carbohydrate oxidation during endurance
cycling. J Appl Physiol (1985). 2010;109(1):126–134.
26. Bartlett JD, Hawley JA, Morton JP. Carbohydrate availability and
exercise training adaptation: too much of a good thing? Eur J Sport
Sci. 2015;15(1):3–12.
27. Burke LM. Fueling strategies to optimize performance: training high
or training low? Scand J Med Sci Sports. 2010;20 Suppl 2:48–58.
28. Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL, Hawley JA.
Skeletal muscle adaptation and performance responses to once a day
versus twice every second day endurance training regimens. J Appl
Physiol (1985). 2008;105(5):1462–1470.
29. Morton JP, Croft L, Bartlett JD, et al. Reduced carbohydrate availability
does not modulate training-induced heat shock protein adaptations but
does upregulate oxidative enzyme activity in human skeletal muscle.
J Appl Physiol (1985). 2009;106(5):1513–1521.
30. Horowitz JF, Mora-Rodriguez R, Byerley LO, Coyle EF. Lipolytic suppression
following carbohydrate ingestion limits fat oxidation during
exercise. Am J Physiol. 1997;273(4 Pt 1):E768–E775.
31. Volek JS, Noakes T, Phinney SD. Rethinking fat as a fuel for endurance
exercise. Eur J Sport Sci. 2015;15(1):13–20.
32. Stellingwerff T, Spriet LL, Watt MJ, et al. Decreased PDH activation
and glycogenolysis during exercise following fat adaptation
with carbohydrate restoration. Am J Physiol Endocrinol Metab.
2006;290(2):E380–E388.
33. van Loon LJ. Is there a need for protein ingestion during exercise?
Sports Med. 2014;44 Suppl 1:S105–S111.
34. Hillman AR, Turner MC, Peart DJ, et al. A comparison of hyperhydration
versus ad libitum fluid intake strategies on measures of
oxidative stress, thermoregulation, and performance. Res Sports Med.
2013;21(4):305–317.
35. Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ,
Stachenfeld NS; American College of Sports Medicine. American
College of Sports Medicine position stand. Exercise and fluid
replacement. Med Sci Sports Exerc. 2007;39(2):377–390.
36. Kristal-Boneh E, Glusman JG, Shitrit R, Chaemovitz C, Cassuto Y.
Physical performance and heat tolerance after chronic water loading and
heat acclimation. Aviat Space Environ Med. 1995;66(8):733–738.
37. Noakes TD. Drinking guidelines for exercise: what evidence is there that
athletes should drink “as much as tolerable”, “to replace the weight lost
during exercise” or “ad libitum”? J Sports Sci. 2007;25(7):781–796.
38. Hoffman MD, Stuempfle KJ. Hydration strategies, weight change
and performance in a 161 km ultramarathon. Res Sports Med.
2014;22(3):213–225.

Dr. Alex Jimenez's insight:

A number of factors contribute to success in sport, and nutrition is a key component. An athlete’s dietary requirements. For Answers to any questions you may have please call Dr. Jimenez at 915-850-0900

Shelby Daugherty's curator insight, March 18, 2021 1:54 PM

A lot of athletes struggle with nutrition in sports. This a lot of the times leads to performance enhancements pills being taken. When athletes aren't feeding their bodies with the nutrients it needs the body will not recover properly from workouts. If you are trying to bulk up but not doing it correctly, this also runs a problem. Everyone wants fast results. Taking enhancements can just hinder you. 

Lauren M's curator insight, June 3, 2022 9:07 AM

Running puts a lot of strain on your body, so learning how to properly fuel your body is essential if you want to run at your best. This article digs deeper into the topic of healthy nutrition. Meeting with a dietician or nutritionist is recommended if you want to understand more about what to eat, according to the article. When I was training for my half marathon, I visited with a nutritionist and we talked about the necessity of protein, carbs, and a variety of other topics!